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Abstract: This paper investigates numerical approaches for solving ordinary and

fractional differential equations by combining traditional techniqueswithmodern neural

network algorithms. Mittag-Leffler capabilities and the Riemann-Liouville and Caputo

subsidiary are hypothetical foundations for fractional differential condition analysis. The

study demonstrates how to evaluate solutions for both direct and non-straight fractional

equations using brain networks built using Genetic Algorithms (GA) and Molecule

Multitude Improvement (PSO). The results from real-world examples show that these

neural network approaches offer excellent accuracy and versatility when compared to

more traditional methods like the GrünwaldLetnikovmethod. The solutions demonstrate

how machine learning may increase the precision of numerical solutions for complex

fractional systems by iteratively optimizing network weights. This study demonstrates

the effectiveness of combining advanced computational approaches with conventional

numerical methods, offering a strong foundation for solving differential equations in a

range of scientific and engineering applications.

Keywords: Fractional Differential Equations, Numerical Methods, ordinary differential

equations, Riemann-Liouville

1. INTRODUCTION

Differential equations are fundamental mathematical tools used to explain a wide range

of phenomena in science, engineering, and technology. Ordinary differential equations

(ODEs) and fractional differential equations (FDEs) are crucial tools for representing

systems that change over time or space and capturing the relationships between

variables and their rates of change. Numerous academic fields, including engineering,

physics, biology, and economics, have studied and employed ODEs. From population

dynamics to electrical circuits, they shed light on a range of processes by developing

models that describe how these systems respond in various situations. Only the
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traditional analytical methods for resolving ODEs, such as variable separation,

integrating factors, and exact solutions, can resolve some circumstances. Because of this,

numerical methods are now crucial for solving ODEs involving complex systems that

exhibit non-linear behavior or lack obvious analytical solutions. As the complexity of real-

world problems increases, interest in studying fractional differential equations (FDEs),

which generalize ODEs by allowing derivatives of non-integer (fractional) order, has

grown. FDEs have grown in popularity because conventional integer-order models

cannot accurately represent systems with memory effects, hereditary features, and

anomalous diffusion. Applications of FDEs can be found in domains including finance,

control theory, fluid dynamics, and viscoelasticity where processes rely on historical

conditions nonlocals. However, adding fractional calculus poses serious challenges for

numerical computation since fractional derivatives are non-local and require the

computation of integrals over enlarged domains. This study aims to provide a

comprehensive overview of numerical methods for solving ordinary and fractional

differential equations. The Euler technique, Runge-Kutta methods, and finite difference

methods are popular approaches for ODEs that strike a compromise between accuracy,

stability, and computational economy. Specialized methods for FDEs, such as the Caputo

derivative, fractional Adams-Bashforth-Moulton method, and Grünwald-Letnikov

approach, are examined in light of their application to fractional operators. Convergence,

stability, and error estimation issues are specifically examined, along with the benefits

and drawbacks of using these numerical methods to solve beginning and boundary value

problems. The study also emphasizes how important it is to select the appropriate

numerical techniques based on the specifics of the differential equation that has to be

resolved. Variables including processing cost, system boundary behavior, and solution

smoothness all have a significant impact on how efficient the chosen strategy is. Through

numerical simulations and examples, the study illustrates the value of different

strategies, helping practitioners and scholars select the most effective methods for their

unique problems. By bridging the gap between theoretical techniques and real-world

implementations, this study advances the ongoing development and optimization of

numerical methods for solving differential equations across a variety of scientific

disciplines. A thorough review of numerical solutions for FDEs is given by Garrappa

(2018), who also offers a detailed examination of the various approaches and how they
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are implemented using software. Numerous numerical systems, such as those based on

Grünwald-Letnikov, Caputo, and other fractional operators, are the subject of the study.

Because Garrappa's work bridges the gap between theory and practice in solving FDEs

by providing practical help through software tutorials in addition to discussing

theoretical elements, it is especially beneficial for scholars and practitioners. Building on

this, Atangana and Owolabi (2018) address some of the inherent difficulties with

conventional methods by introducing a novel numerical method for solving fractional

differential equations. Their method makes use of cutting-edge algorithms that improve

precision and effectiveness, especially when working with intricate, non-linear fractional

models. In addition to offering comparative evaluations that highlight the benefits of

their approach over current methodologies, the authors investigate the applicability of

these methods in real-world events. Their work represents a major advancement in the

creation of reliable numerical techniques for fractional models, which will facilitate the

application of these equations to real-world scientific and engineering issues. Sun, Chang,

Zhang, and Chen (2019) make a significant contribution to this topic by providing a

comprehensive overview of variable-order fractional differential equations, which

generalist constant-order FDEs by permitting the derivative's order to vary with time or

space. The mathematical underpinnings of variable-order models are reviewed, along

with their physical interpretations and numerical techniques for solving them. In

addition to examining the difficulties presented by variable-order derivatives, such as

stability and convergence problems, the authors also offer insights into the real-world

uses of these models in a variety of academic fields. The increasing significance of

variable-order FDEs in effectively simulating dynamic systems with intricate memory

and heredity features is highlighted by their work. Sandev and Tomovski (2019) provide

a thorough analysis of fractional equations and their numerous models in their work

Fractional Equations and Models: Hypothesis and Applications. The researchers provide

a thorough analysis of the numerical ideas behind fractional math’s and its uses in a

variety of fields, including science, design, and physical science. Their work demonstrates

the versatility of fractional models in capturing complex dynamics, especially in systems

with memory and genetic traits. The usefulness of several fractional operators, including

as Riemann-Liouville, Caputo, and others, for simulating real-world processes is

systematically reviewed by Sandev and Tomovski. Their book is a priceless tool for
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scholars and professionals seeking a thorough grasp of fractional differential models and

their practical applications.

2. MAIN DEFINITIONS

Definition 1: The Riemann-Liouville fractional fundamental of request � ∈ R, � > 0 of a

capability f(x) ∈ C�, � ≥ −1 is characterized as

(�� �(�))(�):= 1 ∫
�

Γ(�)
�(�)��

(�−�)1−�
, (� > 0) (1)

Definition 2: The Riemann-Liouville and Caputo fractional subsidiaries of request � ∈

�,� > 0

RL�� �(�):= ( � ) �−�0+ �(�)

= 1 ( �
��

� �) ∫0
�(�)��

�−�+1
Γ(�−�) �� (�−�) (2)��� �(�):= ��−� �

0+ 0+ ( )
��

�(�)

= 1 �

Γ(�−�) 0
(�/��)��(�)�� ,
(�−�)�−�+1

where (� = [�] + 1, � > 0).

Definition 3: The traditional Mittag-Leffler capability is characterized by

E (�):= ∑∞ �� , (� ∈ �, � > 0) (3)
� �=0 Γ(��+1)

The definition of the generalized Mittag-Leffler function is

E (�):= ∑∞ �� , (�, � ∈ �, � > 0) (4)
�,� �=0 Γ(��+�)

Definition 4: The capabilities Sin �, �(�), Cos �, �(�)(�, � ∈ �, � > 0) are characterized

b

Sin�,� (�) = ∑∞ (−1)�+1 �2�−1

Γ(�(2�−1)+�) (5)
Cos�,�(�) = ∑∞ (−1)� �2�

Γ(�(2�)+�)

Euler's equations clearly take the accompanying structures:
E�,�(��) = Cos�,�(�) + �Sin�,�(�)

E�,�(−��) = Cos�,�(�) − �Sin�,�(�)
(6)

Definition 5: If Sin�, �(�) and Cos�,�(�) are defined as in Definition 4, then

�

,

�
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�=1

�=1

�=1

�� (� − �)�−1Sin [�(� − �)�]
�+ �,�

= (� − �)�−�−1Sin�,�−�[�(� − �)�]
�� (� − �)�−1Cos [�(� − �)�] (7)
�+ �,�

= (� − �)�−�−1Cos�,�−�[�(� − �)�]

Amathematical equation was used to define the beta function, and it looks like this:

�̃ (�, �)= Γ(�)Γ(�)

Γ(�+�) (8)

Then, using the Caputo fractional derivatives formulation, we obtain

�� (� − �)�−1Sin [�(� − �)�] = 1 �
∫ (�/��)�(� − �)�−1Sin�,�[�(� − �)�] ��

�+ �,� Γ(� − �) �+ (� − �)�−�+1
1

= ∫Γ(� − �)
�−� (�/��)���−1Sin�,�[���]

(� − � − �)�−�+1 �� (� = � − �)
0+

1 1 (�/��)���−1(� − �)�−1sin�,�[���(� − �)�]
= ∫
Γ(� − �) 0∗ (� − �)�(� − �)�−�+1(1 − �)�−�+1 (� − �)�� (� = �(� − �))

(� − �)�−�−1
=

Γ(� − �)

1 (�/��)���−1 ∑∞ ([���(� − �)�]2�−1/Γ(�(2� − 1) + �))
∫ ��
0+ (1 − �)�−�+1

(� − �)�−�−1 ∑∞ (−1)�+1[�(� − �)�]2�−1 1 (�/��)���−1+�(2�−1)= �=1 ∫ ��
Γ(� − �) Γ(�(2� − 1) + �) 0+ (1 − �)�−�+1

�
(� − �)�−�−1 1 ��−1+�(2�−1)−�= Γ(� − �) �

�=1

[�− � + �(2�−1)]∫
0+ (1 − �)�−�+1 ��

(� − �)�−�−1 ∑∞ (−1)�+1[�(� − �)�]2�−1
= �=1 �̃ (� + �(2� − 1) − �, � − �)

Γ(� − �)
(� − �)�−�−1 ∑∞

Γ(�(2� − 1) + � − �)
(−1)�+1[�(� − �)�]2�−1 Γ(� + �(2� − 1) − �)Γ(� − �)

= �=1

Γ(� − �) Γ(�(2� − 1) + � − �)
(−1)�+1[�(� − �)�]2�−1

Γ(� + �(2� − 1) − �)

= (� − �)�−�−1 ∑
�=1

Γ(�(2� − 1) + � − �)
= (� − �)�−�−1Sin�,�−�[�(� − �)�]. (9)

After that, (8) is true. In the same way, we get (9). Specifically, for � = 1, � = 1, we get

3. METHODOLOGY

The Initial Neural Network

Weexamine (1) with the initial condition �(0) = � in order to explain the procedure. The

� th trial solution that satisfies the first requirement is expressed as

��(�) = ∑� ��,�cos(��) (10)
+(� − ∑� ��,�)cos((⋅ Å+ 1)�)

∞
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0+1

�=1

where the number of neurons is represented by a mathematical expression and wi,j are

the network's unknown weights that were chosen during training to lower the error

function:
� = 1 � 2 = 1∑� 2

2∥ �∥2 2 �=1 (��(�)) , (11)
��= (��(1), ��(2),… , ��(�)�,

where ∥⋅∥ 2 is the Euclidean norm, the number of sample points is represented by a

mathematical equation, and

��(�)=� (��, ��(��))−�� ��(��)
= � (��, ��(��)) − �−�(∑ℳ ��,�Cos1,1−�(���) (12)

� �=1

+(� −∑ℳ ��,�)Cos1,1−�((ℳ + 1)��))

wheremathematical equation is present, we can use the following equation tomodify the

weights wi,j:

��,�+1 = ��,� + Δ��,�, (13)
�

��
Δ��,� = −�

�,�
= −�∑

�=1

��
���(�)

���(�)
���,�

�

= −� ∑
�=1

��(�)�� (��, ��(��)) ⋅ (cos(��) − cos((ℳ+1)��)) − (��)−���(�)

⋅ (Cos1,1−� �� − Cos1,1−�((ℋ + 1)��)) (14)

Example 1: We start by examining the following linear fractional differential equation:
�� �(�) = �2 + 2 �2−� − �(�) (15)
0+ Γ(3−�)

under the criterion y(0) = 0. The precise answer is y(x) = x2. The following techniques

can also be used to solve this equation: Particle Swarm Optimisation (PSO) algorithm

Genetic Algorithm (GA) and Grünwald-Letnikov classical numerical methodology (GL).

The neural network is trained 4500 times with the parameters � = 0.001, mathematical

equation, and mathematical equation. Table 1 lists the network weights for Example 1.

Table 1: Weights (× �� − � ) acquired in conjunction with Cases 1, 2, and 3's

resolution.

� Example 1 Example 2 Example 3

��
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0+

1 0.7 0.5 1 0.7 0.5 1 0.7 0.5

�1 4857 6310 6665 8226 9941 8880 5415 4070 5101

�2
-

0506

-

3466

-

4424
4080 0219 2914

-

1589
0680

-

1582

�3
-

4434

-

2721

-

1362

-

3468

-

0621

-

3593

-

5771

-

5800

-

3972

�4
-

3170

-

3110

-

4990
1680 1372 3715

-

1309

-

2908

-

4142

�5 1896 4204 5290
-

1455

-

1468

-

3147
3295 3947 6096

�6 5534
-

0926
0222 1895 0482 1372 2815 2901

-

0121

�7
-

6316
0182

-

2151

-

1350
0424 0273

-

4609

-

4203

-

2015

Example 2: Second, we have a look at the subsequent linear fractional differential

equation:

�� �(�) = cos(�) + �−�Cos1,1−�(�) − �(�), (16)

assuming that y(0) = 1. The precise answer is y(x) = cos(x). The neural network is

trained 1000 times with the parameters � = 0.001, mathematical equation, and

mathematical equation. Table 2 provides the network weights for Example 2.

Table 2: Accuracy, approximation, and exact solution for Example 2

a Numerical solution Accuracy

x cos(x) 1 0.7 0.5 1 0.7 0.5
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0.1 0.9950 0.9945 0.9967 0.9972 10−4 10−3 10−3

0.2 0.9800 0.9788 0.9852 0.9867 10−3 10−3 10−3

0.3 0.9553 0.9538 0.9620 0.9638 10−3 10−3 10−3

0.4 0.9210 0.9203 0.9249 0.9256 10−4 10−3 10−3

0.5 0.8775 0.8777 0.8758 0.8747 10−4 10−3 10−3

0.6 0.8253 0.8254 0.8196 0.8176 10−4 10−3 10−3

0.7 0.7648 0.7639 0.7607 0.7601 10−4 10−3 10−3

0.8 0.6967 0.6951 0.6990 0.7016 10−3 10−3 10−3

0.9 0.6216 0.6213 0.6286 0.6328 10−4 10−3 10−2

1 0.5403 0.5414 0.5414 0.5405 10−3 10−3 10−4

Example 3: The following nonlinear fractional differential equation is what we look at in

our third step.
�� �(�) = �6 + Γ(3.5) �2.5−� − ��2(�),….(17)
0+ Γ(3.5−�)

under the criterion �(0) = 0. The precise answer is �(�) = �5/2. The neural network is

trained 1000 times with the parameters � = 0.001, mathematical equation, and

mathematical equation. Table 3 lists the weights of the network for Example 2.

Table 3: For Example, 3, the exact, approximate, and accurate solutions

a Numerical solution Accuracy

x x5/2 1 0.7 0.5 1 0.7 0.5

0.1 0.0031 0.0022 0.0055 0.0066 10−4 10−3 10−3
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0.2 0.0178 0.0133 0.0234 0.0266 10−3 10−3 10−3

0.3 0.0492 0.0426 0.0566 0.0603 10−3 10−3 10−3

0.4 0.1011 0.0972 0.1075 0.1093 10−3 10−3 10−3

0.5 0.1767 0.1773 0.1783 0.1772 10−4 10−3 10−4

0.6 0.2788 0.2797 0.2733 0.2711 10−4 10−3 10−3

0.7 0.4099 0.4055 0.4010 0.4009 10−3 10−3 10−3

0.8 0.5724 0.5643 0.5712 0.5738 10−3 10−3 10−3

0.9 0.7684 0.7670 0.7832 0.7847 10−3 10−2 10−2

1 1 1.0064 1.0105 1.0056 10−3 10−2 10−3

4. CONCLUSION

This study combines neural network techniques with traditional approaches to

investigate numerical solutions for fractional and ordinary differential equations. The

basic concepts, including the Mittag-Leffler functions and the Riemann-Liouville and

Caputo derivatives, are used to solve fractional differential equations. Through practical

examples, the study demonstrates how neural networks trained with Genetic Algorithms

(GA) and Particle Swarm Optimisation (PSO) can be used to solve linear and non-linear

fractional equations. The examples show how optimal training can iteratively increase

the correctness of solutions, confirming the accuracy and versatility of neural networks

when compared to more traditional methods such as the Grünwald-Letnikov approach.

According to the analysis, machine learning integration offers scalable and flexible

solutions for complex fractional systems, making it a valuable tool for solving differential

equations in a range of scientific and engineering applications, even though older

methodologies are still helpful.
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