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Abstract: An encryption method is presented with the novel property that publicly revealing 

an encryption key does not thereby reveal the corresponding decryption key. This has two 

important consequences: 1. Couriers or other secure means are not needed to transmit keys, 

since a message can be enciphered using an encryption key publicly revealed by the intended 

recipient. Only he can decipher the message, since only he knows the corresponding 

decryption key. 2. A message can be “signed" using a privately held decryption key. Anyone 

can verify this signature using the corresponding publicly revealed encryption key. Signatures 

cannot be forged, and a signer cannot later deny the validity of his signature. This has 

obvious applications in ““electronic mail" and “electronic funds transfer" systems. 

A message is encrypted by representing it as a number M, raising M to a publicly specified 

power e, and then taking the remainder when the result is divided by the publicly specified 

product, n, of two large secret prime numbers p and q. Decryption is similar, only a different 

secret power d is used, where _d _ 1 (mod (p -1) _ (q -1)). The security of the system rests in 

part on the difficulty of factoring the published divisor, n. 
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INTRODUCTION: 

The era of “electronic mail" may soon be upon us, we must ensure that two important 

properties of the current “paper mail” system are preserved: 

(a) messages are private, and 

(b) messages can be signed. 

We demonstrate in this paper how to build these capabilities into an electronic mail system. 

At the heart of our proposal is a new encryption method. This method provides an 

implementation of a “public-key cryptosystem”, an elegant concept invented by Diffie and 

Hellman. Their article motivated our research, since they presented the concept but not any 

practical implementation of such a system. Readers familiar with this may wish to skip 

directly to Section V for a description of our method. 

II PUBLIC-KEY CRYPTOSYSTEMS: 

In a public key cryptosystem each user places in a public file an encryption procedure E. That 

is, the public file is a directory giving the encryption procedure of each user. The user keeps 

the secret details of his corresponding decryption procedure D. 

These procedures have the following four properties: 

(a) Deciphering the enciphered form of a message M yields M. Formally, 

D(E(M) = M: (1) 

(b) Both E and D are easy to compute. 

(c) By publicly revealing E the user does not reveal an easy way to compute D. 

This means that in practice only he can decrypt messages encrypted with E, or Compute D 

efficiently. 

(d) If a message M is first deciphered and then enciphered, M is the result. Formally, 

E(D(M) = M: (2) 

An encryption (or decryption) procedure typically consists of a general method and an 

encryption key. The general method, under control of the key, enciphers a message M to 

obtain the enciphered form of the message, called the cipher text C. 

Everyone can use the same general method; the security of a given procedure will rest on 

the security of the key. Revealing an encryption algorithm then means revealing the key. 

When the user reveals E he reveals a very inefficient method of computing D(C),testing all 

possible messages M until one such that E(M) = C is found. If property (c) is satisfied the 
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number of such messages to test will be so large that this approach is impractical. A function 

E satisfying (a)-(c) is a “trap-door one-way function”; if it also satisfies (d) it is a “trap-door 

one-way permutation." Diffie and Hellman introduced the2concept of trap-door one-way 

functions but did not present any examples. These functions are called “one-way" because 

they are easy to compute in one direction but (apparently) very difficult to compute in the 

other direction. They are called “trapdoor" 

functions since the inverse functions are in fact easy to compute once certain private “trap-

door" information is known. A trap-door one-way function which also satisfies (d) must be a 

permutation: every message is the cipertext for some other 

message and every ciphertext is itself a permissible message. (The mapping is “one to-one" 

and “onto"). Property (d) is needed only to implement “signatures." 

The reader is encouraged to read Diffie and Hellman's excellent article for further 

background, for elaboration of the concept of a public-key cryptosystem, and for a 

discussion of other problems in the area of cryptography. The ways in which 

a public-key cryptosystem can ensure privacy and enable “signatures" (described in Sections 

III and IV below) are also due to Diffie and Hellman. 

For our scenarios we suppose that A and B (also known as Alice and Bob) are two users of a 

public-key cryptosystem. We will distinguish their encryption and decryption procedures 

with subscripts: EA;DA;EB;DB. 

III Privacy: 

Encryption is a standard means of rendering a communication private. The sender enciphers 

each message before transmitting it to the receiver. The receiver (but not authorized 

person) knows the appropriate deciphering function to apply to the received message to 

obtain the original message. An eavesdropper who hears the transmitted message hears 

only “garbage" (the cipher text) which makes no sense to him since he does not know how 

to decrypt it. The large volume of personal and sensitive information currently held in 

computerized data banks and transmitted over telephone lines makes encryption 

increasingly important. In recognition of the fact that efficient, high-quality encryption 

techniques are very much needed but are in short supply, the National Bureau of Standards 

has recently adopted a “Data Encryption Standard" developed at IBM. The new standard 

does not have property (c), needed to implement a public-key cryptosystem. 
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All classical encryption methods (including the NBS standard) suffer from the “key 

distribution problem." The problem is that before a private communication can begin, 

another private transaction is necessary to distribute corresponding encryption and 

decryption keys to the sender and receiver, respectively. Typically a private courier is used 

to carry a key from the sender to the receiver. Such a practice is not feasible if an electronic 

mail system is to be rapid and inexpensive. A public-key cryptosystem needs no private 

couriers; the keys can be distributed over the insecure communications channel. 

How can Bob send a private message M to Alice in a public-key cryptosystem? 

First, he retrieves EA from the public file. Then he sends her the enciphered messageEA(M). 

Alice deciphers the message by computing DA(EA(M)) = M. By property(c) of the public-key 

cryptosystem only she can decipher EA(M). She can encipher a 3private response with EB, 

also available in the public file. 

Observe that no private transactions between Alice and Bob are needed to establish private 

communication. The only “setup" required is that each user who wishes to receive private 

communications must place his enciphering algorithm in the public file. Two users can also 

establish private communication over an insecure communications channel without 

consulting a public file. Each user sends his encryption key to the other. Afterwards all 

messages are enciphered with the encryption key of the recipient, as in the public-key 

system. An intruder listening in on the channel cannot decipher any messages, since it is not 

possible to derive the decryption keys from the encryption keys. (We assume that the 

intruder cannot modify or insert messages into the channel.) Ralph Merkle has developed 

another solution to this problem. 

A public-key cryptosystem can be used to “bootstrap" into a standard encryption scheme 

such as the NBS method. Once secure communications have been established, the first 

message transmitted can be a key to use in the NBS scheme to encode all following 

messages. This may be desirable if encryption with our method is slower than with the 

standard scheme. (The NBS scheme is probably somewhat faster if special-purpose 

hardware encryption devices are used; our scheme may be faster on a general-purpose 

computer since multi precision arithmetic operations are simpler to implement than 

complicated bit manipulations). 
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IV SIGNATURES: 

If electronic mail systems are to replace the existing paper mail system for business 

transactions, “signing" an electronic message must be possible. The recipient of assigned 

message has proof that the message originated from the sender. This quality is stronger 

than mere authentication (where the recipient can verify that the message came from the 

sender), the recipient can convince a “judge" that the signer sent the message. To do so, he 

must convince the judge that he did not forge the signed message himself. In an 

authentication problem the recipient does not worry about this possibility, since he only 

wants to satisfy himself that the message came from the sender. An electronic signature 

must be message-dependent, as well as signer-dependent. Otherwise the recipient could 

modify the message before showing the message-signature pair to a judge. Or he could 

attach the signature to any message whatsoever, since it is impossible to detect electronic 

“cutting and pasting."To implement signatures the public-key cryptosystem must be 

implemented with trap-door one-way permutations (i.e. have property (d)), since the 

decryption algorithm will be applied to unenciphered messages. 

How can user Bob send Alice a “signed" message M in a public-key cryptosystem? 

He first computes his “signature" S for the message M using DB:S = DB(M) :4 ,(Deciphering 

an unenciphered message “makes sense" by property (d) of a public key cryptosystem, each 

message is the cipher text for some other message.) He then encrypts S using EA (for 

privacy), and sends the result EA(S) to Alice. He need not send M as well; it can be 

computed from S. Alice first decrypts the cipher text with DA to obtain S. She knows who is 

the presumed sender of the signature (in this case, Bob); this can be given if necessary in 

plain text attached to S. She then extracts the message with the encryption procedure of the 

sender, in this case EB (available on the public file), M = EB(S): She now possesses a 

message-signature pair (M, S) with properties similar to those of a signed paper document. 

Bob cannot later deny having sent Alice this message, since no one else could have created S 

= DB(M). Alice can convince a “judge" that EB(S) = M, so she has proof that Bob signed the 

document. Clearly Alice cannot modify M to a different version M0, since then she would 

have to create the corresponding signature S0 = DB(M0) as well. Therefore Alice has 

received a message “signed" by Bob, which she can “prove “that he sent, but which she 

cannot modify. (Nor can she forge his signature for another message.)An electronic checking 
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system could be based on a signature system such as the above. It is easy to imagine an 

encryption device in your home terminal allowing you to sign checks that get sent by 

electronic mail to the payee. It would only be necessary to include a unique check number 

in each check so that even if the payee copies the check the bank will only honour the first 

version it sees. Another possibility arises if encryption devices can be made fast enough, it 

will be possible to have a telephone conversation in which every word spoken is signed byte 

encryption device before transmission. When encryption is used for signatures as above, it 

is important that the encryption device not be “wired in" between the terminal (or 

computer) and the communications channel, since a message may have to be successively 

enciphered with several keys. It is perhaps more natural to view the encryption device as a 

“hardware subroutine" that can be executed as needed. We have assumed above that each 

user can always access the public file reliably. In a “computer network" this might be 

difficult, an “intruder" might forge messages purporting to be from the public file. The user 

would like to be sure that he actually obtains the encryption procedure of his desired 

correspondent and not, say, the encryption procedure of the intruder. This danger 

disappears if the public file “signs “each message it sends to a user. The user can check the 

signature with the public file’s encryption algorithm EPF . The problem of “looking up" EPF 

itself in the public file is avoided by giving each user a description of EPF when he first shows 

up (in person)to join the public-key cryptosystem and to deposit his public encryption 

procedure. He then stores this description rather than ever looking it up again. The need 

for5courier between every pair of users has thus been replaced by the requirement for a 

single secure meeting between each user and the public file manager when the user joins 

the system. Another solution is to give each user, when he signs up, a book (like a telephone 

directory) containing all the encryption keys of users in the system. 

V OUR ENCRYPTION AND DECRYPTION METHODS: 

To encrypt a message M with our method, using a public encryption key (e; n), proceed as 

follows: 

(Here e and n are a pair of positive integers.) 

First, represent the message as an integer between 0 and n-1. (Break a long message into a 

series of blocks, and represent each block as such an integer.) Use any standard 
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representation. The purpose here is not to encrypt the message but only to get it into the 

numeric form necessary for encryption. 

Then, encrypt the message by raising it to the eth power modulo n. That is, the result (the 

ciphertextC) is the remainder when Meis divided by note decrypt the cipher text, raise it to 

another power d, again modulo n. The encryption and decryption algorithms E and D are 

thus: 

C _ E(M) _ Me (mod n); for a message M : 

D(C) _ Cd (mod n); for a ciphertextC : 

Note that encryption does not increase the size of a message; both the message and the 

cipher text are integers in the range 0 to n-1. 

The encryption key is thus the pair of positive integers (e; n). Similarly, the decryption key is 

the pair of positive integers (d; n). Each user makes his encryption key public, and keeps the 

corresponding decryption key private. (These integers should properly be subscripted as in 

nA; eA, and dA, since each user has his own set. However, we will only consider a typical set, 

and will omit the subscripts.)How should you choose your encryption and decryption keys, if 

you want to use our method? 

You first compute n as the product of two primes p and q: 

n = p _ q : 

These primes are very large, “random" primes. Although you will make n public, the factors 

p and q will be effectively hidden from everyone else due to the enormous difficulty of 

factoring n. This also hides the way d can be derived from eye then pick the integer d to be a 

large, random integer which is relatively prime to (p -1) _ (q -1). That is, check that d 

satisfies: 

gcd(d; (p -1) _ (q -1)) = 1 (“gcd" means “greatest common divisor"). 

The integer e is finally computed from p; q, and d to be the “multiplicative inverse “of d, 

modulo (p -1) _ (q -1). Thus we have _ d _ 1 (mod (p -1) _ (q -1)): 

We prove in the next section that this guarantees that (1) and (2) hold, i.e. that Eland D are 

inverse permutations. 

Section VII shows how each of the above operations can be done efficiently. The 

aforementioned method should not be confused with the “exponentiation" technique 

presented by Diffie and Hellman to solve the key distribution problem. Their technique 
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permits two users to determine a key in common to be used in a normal cryptographic 

system. It is not based on a trap-door one-way permutation. 

VI THE UNDERLYING MATHEMATICS: 

We demonstrate the correctness of the deciphering algorithm using an identity due to Euler 

and Fermat: for any integer (message) M which is relatively prime to n,  

M_(n) _ 1 (mod n) : (3)Here _(n) is the Eulertotient function giving number of positive 

integers less than n which are relatively prime to n. For prime numbers p,_(p) = p -1 : 

In our case, we have by elementary properties of the totientfunction :_(n) = _(p) _ _(q)= (p -

1) _ (q -1) (4)= n -(p +q) + 1: Since d is relatively prime to _(n), it has a multiplicative inverse 

e in the ring of integers modulo _(n):e _ d _1(mod_(n)): (5)We now prove that equations (1) 

and (2) hold (that is, that deciphering works correctly if e and d are chosen as above). Now 

D(E(M)) _ (E(M))d _ (Me)d (mod n) =(Me)_d (mod n) 

E(D(M)) _ (D(M))e _ (Med)e (mod n) =(Me)_d (mod n)and 

(Me)_d _ Mk__(n)+1 (mod n) (for some integer k): 

From (3) we see that for all M such that p does not divide M 

Mp||1 _ 1 (mod p)and since (p -1) divides _(n) 

Mk__(n)+1 _ M (mod p):This is trivially true when M _ 0 (mod p), so that this equality 

actually holds for all M. Arguing similarly for q yields Mk__(n)+1 _ M (mod q) :Together 

these last two equations imply that for all M,(Me_)d _ Mk__(n)+1 _ M (mod n): 

This implies (1) and (2) for all M; 0 _ M < n. Therefore E and D are inverse permutations 

VII ALGORITHMS: 

To show that our method is practical, we describe an efficient algorithm for each required 

operation. 

A-How to Encrypt and Decrypt Efficiently: 

Computing Me (mod n) requires at most 2 _ log2(e) multiplications and 2 _ log2(e)divisions 

using the following procedure (decryption can be performed similarly using d instead of e): 

Step 1. Let take||1:::e1e0be the binary representation of e. 

Step 2. Set the variable C to 1. 

Step 3. Repeat steps 3a and 3b for i = k; k -1; : : : ; 0: 

Step 3a. Set C to the remainder of C2 when divided by n. 

Step 3b. If ei= 1, then set C to the remainder of C _M when divided by n. 
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Step 4. Halt. 

Now C is the encrypted form of M. 

This procedure is called “exponentiation by repeated squaring and multiplication." 

This procedure is half as good as the best; more efficient procedures are known. The fact 

that the enciphering and deciphering are identical leads to a simple implementation. (The 

whole operation can be implemented on a few special-purpose integrated circuit chips). A 

high-speed computer can encrypt a 200-digit message M in a few seconds; special-purpose 

hardware would be much faster. The encryption time per block increases no faster than the 

cube of the number of digits in n. 

B-  How to Find Large Prime Numbers 

Each user must (privately) choose two large random numbers p and q to create his own 

encryption and decryption keys. These numbers must be large so that it is not 

computationally feasible for anyone to factor n = p _ q. (Remember that n, but not p or q, 

will be in the public _le.) We recommend using 100-digit (decimal) prime numbers p and q, 

so that n has 200 digits. To _and a 100-digit “random" prime number, generate (odd) 100-

digit random numbers until a prime number is found. By the prime number theorem, about 

in (10100)=2 = 115 numbers will be tested before a prime is found. To test a large number b 

for privately we recommend the elegant “probabilistic “algorithm due to Solovay and 

Strassen. It picks a random number a from auniform distribution on f1; : : : ; b -1g, and tests 

whether god(a; b) = 1 and J(a; b) = a(b||1)=2 (mod b); (6)where J(a; b) is the Jacobi symbol. 

If b is prime (6) is always true. If b is composite(6) will be false with probability at least 1=2. 

If (6) holds for 100 randomly chosen values of a then b is almost certainly prime; there is a 

(negligible) chance of one in 2100 that b is composite. Even if a composite were accidentally 

used in our system, the receiver would probably detect this by noticing that decryption 

didn’t work correctly. When b is odd, a _ b, and god(a; b) = 1, the Jacobi symbol J(a ;b)has a 

value in f||1; 1g and can be efficiently computed by the program:J(a; b) =if a = 1 then 1 

elseif a is even then J(a=2; b) _ (||1)(b2||1)=8else J(b (mod a); a) 

_(||1)(a||1)_(b||1)=4.(The computations of J(a; b) and god(a; b) can be nicely combined, 

too). Note that this algorithm does not test a number for privately by trying to factor it. 

Other efficient procedures for testing a large number for privately are given in [6,9,11].To 

gain additional protection against sophisticated factoring algorithms, p and qshould differ in 
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length by a few digits, both (p -1) and (q -1) should contain large prime factors, and god(p -1; 

q -1) should be small. The latter condition is easily checked. To and a prime number p such 

that (p -1) has a large prime factor, generate a large random prime number u, then let p be 

the first prime in the sequence i_ u + 1,for i = 2; 4; 6; : : : : (This shouldn't take too long.) 

Additional security is provided by ensuring that (u -1) also has a large prime factor. A high-

speed computer can determine in several seconds whether a 100-digit number is prime, and 

can find the first prime after a given point in a minute or two. 

Another approach to finding large prime numbers is to take a number of known 

factorization, add one to it, and test the result for privately. If a prime p is found9it is 

possible to prove that it is really prime by using the factorization of p -1. We omit a 

discussion of this since the probabilistic method is adequate. 

C-  How to Choose d 

It is very easy to choose a number d which is relatively prime to _(n). For example, any 

prime number greater than max(p; q) will do. It is important that d should be chosen from a 

large enough set so that a cryptanalyst cannot find it by direct search. 

D-  How to Compute e from d and _(n) 

To compute e, use the following variation of Euclid's algorithm for computing the greatest 

common divisor of _(n) and d. (See exercise 4.5.2.15 in [3]). 

Calculate g od(_(n); d) by computing a series x0; x1; x2; : : :, where x0 _ _(n); x1 = d, and xi+1 

_xi||1 (mod xi), until an x0equal to 0 is found. Then god(x0; x1) = x0||1. Compute for each 

xi numbers a1and bi such that xi = a1_ x0 + bi_ x1. If x0||1 = 1 thenb0||1is the 

multiplicative inverse of x1 (mod x0). Since k will be less than 2 log2(n), this computation is 

very rapid. If e turns out to be less than log2(n), start over by choosing another value of 

d.This guarantees that every encrypted message (except M = 0 or M = 1) undergoes some 

“wrap around" (reduction modulo n). 

VIII A SMALL EXAMPLE: 

Consider the case p = 47; q = 59; n = p _ q = 47 _ 59 = 2773, and d = 157. Then_(2773) = 46 _ 

58 = 2668, and e can be computed as follows:x0 = 2668, a0 = 1, b0 = 0,x1 = 157, a1 = 0, b1 = 

1,x2 = 156, a2 = 1, b2 = ||16 (since 2668 = 157 _ 16 + 156) ,x3 = 1, a3 = ||1, b3 = 17 (since 

157 = 1 _ 156 + 1) .Therefore e = 17, the multiplicative inverse (mod 2668) of d = 157.With n 

= 2773 we can encode two letters per block, substituting a two-digit number for each letter: 
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blank = 00, A = 01, B = 02, . . . , Z = 26. Thus the message ITS ALL GREEK TO ME(Julius Caesar, 

I, ii, 288, paraphrased) is encoded:0920 1900 0112 1200 0718 0505 1100 2015 0013 

0500Since e = 10001 in binary, the first block (M = 920) is enciphered:M17 = 

(((((1)2_M)2)2)2)2 _M = 948 (mod 2773) :10The whole message is enciphered as:0948 2342 

1084 1444 2663 2390 0778 0774 0219 1655 .The reader can check that deciphering works: 

948157 _ 920 (mod 2773), etc. 

IX SECURITY OF THE METHOD: CRYPTANALYTIC APPROACHES 

Since no techniques exist to prove that an encryption scheme is secure, the only test 

available is to see whether anyone can think of a way to break it. The NBS standard was 

“certified" this way; seventeen man-years at IBM were spent fruitlessly trying to break that 

scheme. Once a method has successfully resisted such a concerted attack it may for 

practical purposes be considered secure. We show in the next sections that all the obvious 

approaches for breaking our system are at least as difficult as factoring n. While factoring 

large numbers is not provably difficult, it is a well-known problem that has been worked on 

for the last three hundred years by many famous mathematicians. Fermat (1601?-1665) and 

Legendre(1752-1833) developed factoring algorithms; some of today's more efficient 

algorithms are based on the work of Legendre. As we shall see in the next section, however, 

no one has yet found an algorithm which can factor a 200-digit number in a reasonable 

amount of time. We conclude that our system has already been partially “certified “by these 

previous efforts to find efficient factoring algorithms. In the following sections we consider 

ways a cryptanalyst might try to determine the secret decryption key from the publicly 

revealed encryption key. We do not consider ways of protecting the decryption key from 

theft; the usual physical security methods should sauce. (For example, the encryption device 

could be a separate device which could also be used to generate the encryption and 

decryption keys, such that the decryption key is never printed out (even for its owner) but 

only used to decrypt messages. The device could erase the decryption key if it was 

tampered with.) 

A Factoring n 

Factoring n would enable an enemy cryptanalyst to “break" our method. The factors of n 

enable him to compute _(n) and thus d. Fortunately, factoring a number seems to be much 

more difficult than determining whether it is prime or composite.A large number of 
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factoring algorithms exist. The fastest factoring algorithm known to the authors is due to 

Richard Schroeppel(unpublished); it can factor n in approximatelyexpq1n(n) _ 1n(1n(n)) = 

np1n1ln(n)=1n(n)11 = (1n(n))p1n(n)= 1n(1n(n)) steps (here 1n denotes the natural logarithm 

function). Table 1 gives the number of1operations needed to factor n with Schroeppel's 

method, and the time required if each operation uses one microsecond, for various lengths 

of the number n (in decimal digits).Table 1 
Digits Number of operations Time 

50 1:4 _ 1010 3.9 hours 

75 9:0 _ 1012 104 days 

100 2:3 _ 1015 74 years 

200 1:2 _ 1023 3:8 _ 109 years 

300 1:5 _ 1029 4:9 _ 1015 years 

500 1:3 _ 1039 4:2 _ 1025 years 

We recommend that n be about 200 digits long. Longer or shorter lengths cane used 

depending on the relative importance of encryption speed and security in the application at 

hand. An 80-digit n provides moderate security against an attack using current technology; 

using 200 digits provides a margin of safety against future developments. This flexibility to 

choose a key-length (and thus a level of security) to suit a particular application is a feature 

not found in many of the previous encryption schemes (such as the NBS scheme). 

B Computing _(n) Without Factoring n 

If a cryptanalyst could compute _(n) then he could break the system by computing d as the 

multiplicative inverse of e modulo _(n) (using the procedure of Section VII D).We argue that 

this approach is no easier than factoring n since it enables the cryptanalyst to easily factor n 

using _(n). This approach to factoring n has not turned out to be practical. How can n be 

factored using _(n)? First, (p + q) is obtained from n and _(n) =n||(p+q)+1. Then (p||q) is the 

square root of (p+q)2||4n. Finally, q is half the difference of (p + q) and (p -q). Therefore 

breaking our system by computing _(n) is no easier than breaking our system by factoring n. 

(This is why n must be composite; _(n) is trivial to compute if n is prime). 

C Determining d Without Factoring n or Computing _(n). 

Of course, d should be chosen from a large enough set so that a direct search for it is 

unfeasible. We argue that computing d is no easier for a cryptanalyst than factoring n, since 
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once d is known n could be factored easily. This approach to factoring has also not turned 

out to be fruitful. A knowledge of d enables n to be factored as follows. Once a cryptanalyst 

knows d he can calculate e _ d||1, which is a multiple of _(n). Miller [6] has shown that n 

cane factored using any multiple of _(n). Therefore if n is large a cryptanalyst should not be 

able to determine d any easier than he can factor n. A cryptanalyst may hope to find a d0 

which is equivalent to the d secretly held by a user of the public-key cryptosystem. If such 

values d0 were common then a bruteforce search could break the system. However, all such 

d0 differ by the least common multiple of (p||1) and (q ||1), and finding one enables n to 

be factored. (In (3) and(5), _(n) can be replaced by lcm(p -1; q -1).) Finding any such d0 is 

therefore as difficult as factoring n. 

X AVOIDING “REBLOCKING" WHEN ENCRYPTING A SIGNED MESSAGE: 

A signed message may have to be “reblocked" for encryption since the signature n may be 

larger than the encryption n (every user has his ownn). This can be avoided as follows. A 

threshold value h is chosen (say h = 10199) for the public-key cryptosystem. Every user 

maintains two public (e; n) pairs, one for enciphering and one for signature verification, 

where every signature n is less than h, and every enciphering n is greater than h. Reblocking 

to encipher a signed message is then unnecessary; the message is blocked according to the 

transmitter's signature n. 

XI CONCLUSIONS: 

We have proposed a method for implementing a public-key cryptosystem whose security 

rests in part on the difficulty of factoring large numbers. If the security of our method 

proves to be adequate, it permits secure communications to be established without the use 

of couriers to carry keys, and it also permits one to “sign" digitized documents. The security 

of this system needs to be examined in more detail. In particular, the difficulty of factoring 

large numbers should be examined very closely. The reader is urged to find a way to “break" 

the system. Once the method has withstood all attacks for a sufficient length of time it may 

be used with a reasonable amount of confidence. Our encryption function is the only 

candidate for a “trap-door one-way permutation “known to the authors. It might be 

desirable to find other examples, to provide alternative implementations should the security 

of our system turn out someday to be inadequate. There are surely also many new 

applications to be discovered for these functions. 
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