A THEOREM ON GENERALIZED $|v,\lambda|_k$ SUMMABILITY OF INFIINITE SERIES

Dr. Pragati Sinha

Associate Professor
Dept. of Applied Sc. &
Humanisites Mangalmay Institute of
Engg. & Tech.
Greater Noida, U.P. -201308
Email:
pragati.sinha.saxena@gmail.com
Dr. Sanjeev Kumar Saxena
Associate Professor
Department of Mathematics
N.M.S.N. Das (P.G.) College,
Budaun, U.P.-243601

ABSTRACT

1.1 DEFINITIONS AND NOTATIONS

Let Σa_n be a given infinite $\mathrm{series} s_n$ as its n^{th} partial sum. Let $\lambda=\{\lambda_n\}$ be a monotonic, non-decreasing sequence of natural numbers with $\lambda_{n+1}-\lambda_n\leq 1$ and $\lambda_1=1$ The sequence-to-sequence transformation

$$V_n(\lambda) = \frac{1}{\lambda_n} \sum_{v=n-\lambda_{n+1}}^n s_v$$

defines the generalized de la Vallee Poissin means of the sequence $\{s_n\}$ generated by the sequence $\{\lambda_n\}$. The series $\sum a_n$ is said to be summable $|V,\lambda|$ if the sequence $\{V_n(\lambda)\}$ is of bounded variation, that is to say

$$\sum_{n=1}^{\infty} |V_{n+1}(\lambda) - V_n(\lambda)| < \infty$$
 (1.1)

The series Σa_n will be said to be summable $|V, \lambda|_k$, $k \ge 1$, if the series

 $\sum_{n=1}^{\infty} \lambda_n^{k-1} |V_{n+1}(\lambda) - V_n(\lambda)|^k < \infty.$

For $\lambda_n = n$, it reduces to $|C, 1|_k$ and for k = 1 it is the same as $|v, \lambda|$.

If
$$\sum_{v=1}^{n} \frac{|s_v|}{v} = O(\log^{\frac{n}{2}} n)$$
 as $n \to \infty$

then Σa_n is said to be strongly bounded by logarithmic meanswith index 1 or simply bounded $[R, \log_{10}, 1]$ we shall write throughout for any sequence $\{\epsilon_n\}$.

We shall have the occasions to write

$$\Delta \epsilon_n = \epsilon_n - \epsilon_{n+1}$$

$$\Delta^2 \epsilon_n = \Delta(\Delta \epsilon_n)$$

A sequence $\{\epsilon_n\}$ is said to be convex if

$$\Delta^2 \epsilon_n \ge 0$$
, $n = 1,2,3,...$

1.2 MISHRA and SHRIVASTAVA [2] have proved the following theorem:

Let $\{\psi_n\}$ is a +ve nondecreasing sequence and $\{\beta_n\}$ and $\{\epsilon_n\}$ are such that

$$|\Delta \epsilon_n| \le \beta_n \tag{1.2.1}$$

ISSN: 2278-6244

Impact Factor: 7.436

$$\beta_n \to 0 \text{ as } n \to \infty$$
 (1.2.2)

$$\sum_{n=1}^{\infty} n|\Delta\beta_n|\varphi_n < \infty \tag{1.2.3}$$

$$|\epsilon_n|\varphi_n = 0(1) \tag{1.2.4}$$

lf

$$\sum_{v=1}^{n} \frac{|s_v|^k}{v} = O(\varphi_n), \text{ for } k \ge 1$$
 (1.2.5)

then $\Sigma a_n \epsilon_n |C, I|$ is summable.

Generalized the above theorem for $|V,\lambda|_k$ summability SHARMA and SINHA [3] have proved the following theorem:

THEOREM B: Let $\{\psi_n n\}$ be a +re nondecreasing sequence and there sequence $\{\beta_n\}$ and $\{\psi_n\}$ are such that

$$|\Delta \epsilon_n| \le \beta_n \tag{1.2.6}$$

ISSN: 2278-6244

Impact Factor: 7.436

$$\beta_n \to 0 \quad \text{as } n \to \infty$$
 (1.2.7)

$$\sum_{n=1}^{\infty} \lambda_n |\Delta \beta_n| \varphi_n < \infty \tag{1.2.8}$$

If
$$\sum_{v=1}^{n} \frac{|s_v|^k}{\lambda_v} = 0(\psi_n)$$
 (1.2.9)

for $k\geqslant 1$ then $\Sigma a_n\epsilon_n$, $|v,\lambda|_k$ is summable

where

$$\psi_n = \sum_{v=1}^n \lambda_v^{-1}.$$

The object of this paper is to generalized the theorem A and B.

1.3 THEOREM: Let $\{\psi_n\}$ is a +ve nondecreasing sequence and the sequence $\{\beta_n\}$ and $\{\in_n\}$ are such that

$$|\Delta \epsilon_{\rm n}| \le \beta_{\rm n} \tag{1.3.0}$$

$$\beta_{\rm n} \to 0 \text{ as n} \to \infty$$
 (1.3.1)

$$\sum_{n=1}^{\infty} \lambda_n |\Delta \beta_n| \psi_n < \infty \tag{1.3.2}$$

$$If|\in_n |\psi_n = O(1) \tag{1.3.3}$$

$$\sum_{v=1}^{n} \frac{|s_v|^k}{v} = o(\psi_n \rho_n), k \ge 1$$
 (1.3.4)

ISSN: 2278-6244 Impact Factor: 7.436

where $\psi_n = \sum_{i=1}^n \lambda_1^{-1}$ and $\{\rho_n\}$ are such type of +ve non-decreasing sequence that

$$\lambda_n \psi_n \rho_n \Delta \left(\frac{1}{\rho_n}\right) = o(1) \quad \text{as} \quad n \to \infty$$
 (1.3.5)

then $\sum \frac{a_n \epsilon_n}{\rho_n}$, $|v, \lambda|_k$ is summable.

We shall use the following Lemma in the proof of our theorem.

1.4 Lemma [3], If $\{\psi_n\}$, $\{\beta_n\}$ and $\{\epsilon_n\}$ satisfies the conditions of the theorem then

$$\lambda_n \psi_n, \beta_n = O(1) \tag{1.4.1}$$

and

$$\sum_{n=1}^{\infty} \beta_n \psi_n < \infty \tag{1.4.2}$$

Proof of the Theorem

Let
$$T_n = v_{n+1}(\lambda; \epsilon_n) - v_n(\lambda; \epsilon_n)$$

where $v_n(\lambda) \in \text{is } n^{\text{th}}$ De LaPoussian Pale mean. Then to prove the theorem we have

$$\sum_{n=1}^{\infty} \lambda_n^{k-1} |I_n|^k < \infty.$$

Let $\Sigma^{'}n$ is the summation which satisfying that $\lambda_{n+1}=\lambda_n$, and $\Sigma^{''}n$ runs over from $\lambda_{n+1}>\lambda_n$ then

$$T_n \frac{1}{\lambda_n \lambda_{n+1}} \sum_{v=n-\lambda_{n+2}}^{n+1} \left[(\lambda_{n+1} - \lambda_n) + \lambda_n \right] \frac{a_v \epsilon_v}{\rho_v}$$

when $\lambda_{n+1} = \lambda_n$ then we get

 $T_n = \frac{1}{\lambda_{n+1}} \sum_{v=n-\lambda_{n+2}}^{n+1} \frac{a_v \in_v}{\rho_v}$

$$= \frac{1}{\lambda_{n+1}} \sum_{v=n-\lambda_{n+2}}^{n+1} \frac{va_v \in_v}{\rho_v}$$

Applying the Abel's transformation we have

$$T_n = [\Sigma_1 + \Sigma_2 + \Sigma_3]$$

where

$$\Sigma_{1} = \frac{1}{\lambda_{n+1}} \sum_{v=n-\lambda_{n+2}}^{n} \Delta \left(\frac{\epsilon_{v}}{v \rho_{v}} \right) \sum_{r=0}^{v} r a_{r}$$

$$= \frac{1}{\lambda_{n+1}} \sum_{v=n-\lambda_{n+2}}^{n} \Delta\left(\frac{\epsilon_v}{v\rho_v}\right) (v+1) s_v$$

$$\Sigma_2 = \frac{1}{\lambda_{n+1}} \frac{\epsilon_{n+1}}{(n+1)\rho_{n+1}} \sum_{r=0}^{n+1} r a_r$$

$$=\frac{1}{\lambda_{n+1}} \quad \frac{n+1}{\rho_{n+1}} s_{n+1}$$

and

$$\Sigma_{3} = \frac{\epsilon_{n} - \lambda_{n+2}}{n + 1(n - \lambda_{n+2})\rho_{n} - \lambda_{n+2}} \sum_{r=0}^{n - \lambda_{n+1}} ra_{r}$$
$$= \frac{n - \lambda_{n+2}s_{n} - \lambda_{n+2}}{n + 1\lambda_{n} - \lambda_{n+2}}$$

Now we shall discuss at Σ_1 we have

$$\Sigma_1 = \Sigma_{11} + \Sigma_{12} + \Sigma_{13} + \Sigma_{14}$$

where

ISSN: 2278-6244

 $\Sigma_{11} = \frac{1}{\lambda_n} \sum_{v=n-\lambda_{n+2}}^{n} \frac{\Delta \epsilon_v s_v}{\rho_v}$

$$\Sigma_{12} = \frac{1}{\lambda n} \sum_{v=n-\lambda_{n+2}}^{n} \frac{\Delta \epsilon_v s_v}{\rho_v}$$

$$\Sigma_{13} = \frac{1}{\lambda_n} \sum_{v=n-\lambda_{n+2}}^{n} \frac{\Delta \epsilon_{v+1} s_v}{\rho_v}$$

and

$$\Sigma_{14} = \frac{1}{\lambda_n} \sum_{v=n-\lambda_{n+2}}^{n} \epsilon_{v+1} s_v \quad \Delta\left(\frac{1}{\rho_v}\right)$$

so we have to prove, by Bosanquet's inequality that

$$\Sigma^1 \lambda_n^{k-1} |\Sigma_{1r}|^k < \infty$$
 for $r=1,2,3,4$

$$\Sigma^1 \lambda_n^{k-1} |\Sigma_2|^k < \infty$$

$$\Sigma^1 \lambda_n^{k-1} |\Sigma_3|^k < \infty.$$

Now

$$\Sigma^1 \lambda_n^{k-1} |\Sigma_{11}|^k$$

$$= \Sigma^{1} \lambda_{n}^{k-1} \left| \frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n+2}}^{n} \Delta \frac{\epsilon_{v} s_{v}}{\rho_{v}} \right|^{k}$$

$$= O(1) \left[\Sigma^{1} \frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\Delta \epsilon_{v}| |s_{v}|^{k}}{\rho_{v}} \right]$$

$$= O(1) \left[\Sigma^{1} \frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\Delta \epsilon_{v}| \cdot |S_{v}|^{k}}{\rho_{v}} \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\Delta \epsilon_{v}|^{k-1}}{\rho_{v}} \right]$$

$$= O(1) \left[\Sigma^{1} \frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\Delta \epsilon_{v}| |s_{v}|^{k}}{f_{v}} \right]$$

ISSN: 2278-6244

$$= O(1) \left[\sum_{v=1}^{\infty} \frac{|s_v|^k |\Delta \epsilon_v|}{\rho_v} \sum_{n=v}^{v+\lambda_v-1} \frac{1}{\lambda_n} \right]$$

$$= O(1) \left[\sum_{v=1}^{\infty} \frac{|S_v|^k}{\rho_v} \beta_v \right]$$

Now

$$\sum_{v=1}^{m} \frac{|s_v|^k}{\lambda_v} \frac{\beta_v \lambda_v}{\rho_v} = \sum_{v=1}^{m-1} \Delta \left\{ \frac{\beta_v \lambda_v}{v} \right\} \sum_{r=1}^{v} \frac{|s_r|^k}{r} + \frac{\lambda_m}{\rho_{m+1}} \sum_{v=1}^{m} \frac{|s_v|^k}{v}$$
$$= \Sigma_{11}^{(1)} + \Sigma_{11}^{(2)} + \Sigma_{11}^{(3)} + \Sigma_{11}^{(4)}$$

where

$$\Sigma_{11}^{(1)} = \sum_{v=1}^{m-1} \Delta \beta_v \lambda_v \quad \psi_v = O(1)$$

$$\Sigma_{11}^{(2)} = \sum_{v=1}^{m-1} \beta_{v+1} \Delta \lambda_v \quad \varphi_v = O(1)$$

$$\Sigma_{11}^{(3)} = \sum_{v=1}^{m-1} \beta_{v+1} \lambda_{v+1} \Delta \left(\frac{1}{\rho_v}\right) \rho_v \psi_v = O(1)$$

and

$$\Sigma_{11}^{(4)} \Rightarrow \lambda_{\rm m} \beta_{{\rm m}+1} \varphi_{\rm m} = O(1) asm \to \infty$$

by the condition (1.3.1), (1.3.2), (1.3.3) and (1.3.4) and by the properties of Lemma. So,

$$\Sigma^1 \lambda_n^{k-1} |\Sigma_{11}|^k < \infty.$$

We discuss

$$\Sigma^{1} \lambda_{n}^{k-1} \left| \sum_{12} \right|^{k} = \sum_{1}^{1} \lambda_{n}^{k-1} \left| \lambda_{n} \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\Delta \epsilon_{v}| |s_{v}|}{v \rho_{v}} \right|^{k}$$

$$=O(1)\left[\Sigma^1\frac{1}{\lambda_n}\left\{\sum_{v=n-\lambda_{n+2}}^n\frac{|\Delta\epsilon_v||s_v|^k}{\rho_v}\right\}\left\{\sum_{v=n-\lambda_n}^n\frac{\beta_v}{v\rho_v}\right\}^{k-1}\right]$$

$$= O(1) \left[\Sigma^{1} \frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n+2}}^{n} \frac{\beta_{v} |s_{v}|^{k}}{v \rho_{v}} \right]$$

$$= O(1) \left[\Sigma^{1} \frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n+2}}^{n} \frac{\beta_{v} |s_{v}|^{k}}{v \rho_{v}} \right]$$

$$= O(1) \left[\sum_{v=1}^{\infty} \frac{\beta_v}{v} \frac{|s_v|^k}{\rho_v} \sum_{n=v}^{v+\lambda_v-1} \frac{1}{\lambda_n} \right]$$

Now

$$\sum_{v=1}^{m} \frac{\beta_{v} \lambda_{v}}{v \rho_{v}} \frac{|s_{v}|^{k}}{v} = \sum_{v=1}^{m-1} \Delta \left\{ \frac{\beta_{v} \lambda_{v}}{v \rho_{v}} \right\} \sum_{r=1}^{v} \frac{|s_{r}|}{\lambda_{r}} + \frac{\beta_{m} \lambda_{m}}{m \rho_{m}} \sum_{r=1}^{m} \frac{|s_{r}|^{k}}{\lambda_{r}}$$
$$= O(1) \left[\Sigma_{12}^{(1)} + \Sigma_{12}^{(2)} + \Sigma_{12}^{(3)} + \Sigma_{12}^{(4)} + \Sigma_{12}^{(5)} \right]$$

where

$$\Sigma_{12}^{(1)} = \sum_{v=1}^{m-1} \frac{|\Delta \beta_{v}| \lambda_{v} \psi_{v}}{v} = 0(1)$$

$$\Sigma_{12}^{(2)} = \sum_{v=1}^{m-1} \frac{\beta_{v+1} \Delta \lambda_{v} \varphi_{v}}{v} = 0(1)$$

$$\Sigma_{12}^{(3)} = \sum_{v=1}^{m-1} \frac{\beta_{v+1} \lambda_{v+1} \psi_{v}}{v(v+1)} = 0(1)$$

$$\Sigma_{12}^{(4)} = \sum_{v=1}^{m-1} \frac{\beta_{v+1} \lambda_{v+1} \psi_{v}}{v(v+1)} \Delta \left(\frac{1}{\rho_{v}}\right) \quad \rho_{v} \psi_{v} = 0(1)$$

and

$$\Sigma_{12}^{(5)} = \frac{\beta_m \lambda_m \psi_m}{m} = O(1)$$

as $m \to \infty$ by the hypothesis of the theorem and the property of Lemma so,

$$\Sigma^1 \lambda_n^{k-1} |\Sigma_{12}|^k < \infty$$

Again,

$$\begin{split} & \Sigma^{1} \lambda_{n}^{k-1} | \Sigma_{13} |^{k} \\ &= \Sigma^{1} \lambda_{n}^{k-1} \left| \frac{1}{n} \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\epsilon_{v+1}| |s_{v}|}{v \rho_{v}} \right|^{k} \\ &= O(1) \left[\Sigma^{1} \frac{1}{n} \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\epsilon_{v}| |s_{v}|}{v \rho_{v}} \right]^{k} \\ &= O(1) \left[\Sigma^{1} \frac{1}{n} \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\epsilon_{v}| |s_{v}|^{k}}{v \rho_{v}} \left\{ \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\epsilon_{v}|}{v \rho_{v}} \right\}^{k-1} \right] \\ &= O(1) \left[\Sigma^{1} \frac{1}{\lambda_{n}} \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\epsilon_{v}| |s_{v}|^{k}}{v \rho_{v}} \right] \\ &= O(1) \left[\sum_{v=1}^{\infty} \frac{|\epsilon_{v}| |s_{v}|^{k}}{v \rho_{v}} \sum_{v=n}^{v+\lambda_{v}-1} \frac{1}{\lambda_{n}} \right] \\ &= O(1) \left[\sum_{v=1}^{\infty} \frac{|\epsilon_{v}| |s_{v}|^{k}}{v \rho_{v}} \right] \end{split}$$

Now

$$\sum_{v=1}^{m} \frac{|\epsilon_v| |s_v|^k}{v \rho_v} = \sum_{v=1}^{m} \frac{|\epsilon_v| \lambda_v}{v \rho_v} \frac{|s_v|^k}{\lambda_v}$$

$$= O(1) \left[\sum_{v=1}^{m-1} \frac{|\epsilon_v| |S_v|}{v \rho_v} \sum_{r=1}^v \frac{|S_r|^k}{r} + \frac{|\epsilon_m| \lambda_m}{m \rho_m} \sum_{r=1}^m \frac{|S_r|^k}{r} \right]$$

ISSN: 2278-6244

where

$$= 0(1) \left[\Sigma_{13}^{(1)} + \Sigma_{13}^{(2)} + \Sigma_{13}^{(3)} + \Sigma_{13}^{(4)} + \Sigma_{13}^{(5)} \right]$$

$$\Sigma_{13}^{(1)} = \sum_{v=1}^{m-1} \frac{\beta_{v} \lambda_{v} \psi_{v}}{v} = O(1)$$

$$\Sigma_{13}^{(2)} = \sum_{v=1}^{m-1} \frac{|\epsilon_{v+1}| \Delta \lambda_{v} \varphi_{v}}{v} = O(1)$$

$$\Sigma_{13}^{(3)} = \sum_{v=1}^{m-1} \frac{|\epsilon_{v+1}| \lambda_{v+1} \psi_{v} \rho_{v}|}{v} \quad \left(\frac{1}{\rho_{v}}\right) = O(1)$$

$$\Sigma_{13}^{(4)} = \sum_{v=1}^{m-1} \frac{|\epsilon_{v+1}| \lambda_{v+1} \psi_{v}}{v(v+1)} = O(1)$$

and

$$\Sigma_{13}^{(5)} = \frac{|\epsilon_m|\lambda_m\psi_m}{m} = O(1)$$

as $m \to \infty$ by the hypothesis and Lemmaso

$$\varepsilon^1 \lambda_n^{k-1} |\Sigma_{13}|^k < \infty$$

$$\Sigma^1 \lambda_n^{k-1} |\Sigma_{14}|^k =$$

$$= \Sigma^1 \lambda_n^{k-1} \left| \frac{1}{\lambda_n} \sum_{v=n-\lambda_{n+2}}^n \in_{v+1} s_v \Delta\left(\frac{1}{\rho_v}\right) \right|^k$$

$$= O(1) \left[\Sigma^{1} \frac{1}{n} \left\{ \sum_{v=n-\lambda_{n+2}}^{n} |\epsilon_{v}| |s_{v}| \Delta \left(\frac{1}{\rho_{v}}\right) \right\}^{k} \right]$$

$$= 0(1) \left[\Sigma^{1} \frac{1}{\lambda_{n}} \left\{ \sum_{v=n-\lambda_{n+2}}^{n} |\epsilon_{v}| |s_{v}|^{k} \Delta \left(\frac{1}{\rho_{v}} \right) \right\} \times \right]$$

ISSN: 2278-6244

$$\times \left\{ \sum_{v=n-\lambda_{n+2}}^{n} |\epsilon_v| \quad \left(\frac{1}{\rho_v}\right) \right\}^{k-1} \right]$$

$$= O(1) \quad \left[\Sigma^{1} \frac{1}{n} \sum_{v=n-\lambda_{n+2}}^{n} \quad |\epsilon_{v}| |s_{v}|^{k} \Delta \left(\frac{1}{\rho_{v}} \right) \right]$$

$$= O(1) \left[\sum_{v=1}^{\infty} |\epsilon_v| |s_v|^k \Delta \left(\frac{1}{\rho_v} \right) \sum_{v=n-\lambda_{n+2}}^{v=\lambda_n - 1} \frac{1}{\lambda_n} \right]$$

$$=O(1)\left[\sum_{v=1}^{\infty} |\epsilon_v| |s_v|^k \Delta\left(\frac{1}{\rho_v}\right)\right]$$

Now,

$$\sum_{v=1}^{m} |\epsilon_{v}| |s_{v}|^{k} \Delta \left(\frac{1}{\rho_{v}}\right) = \sum_{v=1}^{m} |\epsilon_{v}| \lambda_{v} \Delta \left(\frac{1}{\rho_{v}}\right) \frac{|s_{v}|^{k}}{\lambda_{v}}$$

$$= O(1) \left[\sum_{v=1}^{m-1} \Delta \left\{ |\epsilon_{v}| \lambda_{v} \Delta \left(\frac{1}{\rho_{v}}\right) \sum_{r=1}^{v} \frac{|S_{r}|^{k}}{\lambda_{l}} + \right.$$

$$+ |\epsilon_{m}| \lambda_{m} \Delta \left(\frac{1}{\rho_{m}}\right) \sum_{r=1}^{m} \frac{|s_{r}|^{k}}{\lambda_{r}} \right\}^{3} \right]$$

$$= O(1) \left[\sum_{14}^{(1)} + \sum_{14}^{(2)} + \sum_{14}^{(3)} + \sum_{14}^{(4)} \right]$$

where

$$\Sigma_{14}^{(1)} = \sum_{\mathrm{v}=1}^{\mathrm{m}-1} \, eta_{\mathrm{v}} \lambda_{\mathrm{v}} \Delta \left(rac{1}{
ho_{\mathrm{v}}}
ight) \quad
ho_{\mathrm{v}} \psi_{\mathrm{v}} = O(1)$$

$$\Sigma_{14}^{(2)} = \sum_{v=1}^{m-1} |\epsilon_{v+1}| \Delta \lambda_v \Delta \left(\frac{1}{\rho_v}\right) \psi_v = O(1)$$

$$\Sigma_{14}^{(3)} = \sum_{v=1}^{m-1} |\epsilon_{v+1}| \lambda_{v+1} \Delta^2 \left(\frac{1}{\rho_v}\right) \rho_v \varphi_v = O(1)$$

ISSN: 2278-6244

 $\Sigma_{14}^{(4)} = |\epsilon_m| \lambda_m \Delta\left(\frac{1}{\rho_m}\right) \quad \rho_m \psi_m = O(1)$

asm $\rightarrow \infty$ by the hypothesis and Lemmaso,

$$\sum \lambda_n^{k-1} |\Sigma_{14}|^k < \infty$$

We get more than

$$\Sigma^{1} \lambda_{n}^{k-1} |\Sigma_{2}|^{k} + \Sigma^{1} \lambda_{n}^{k-1} |\Sigma_{3}|$$

$$= O(1) \left[\Sigma^{1} \frac{|\epsilon_{n}| |s_{n}|^{k}}{\lambda n |\rho_{n}|^{k}} \right]$$

$$= O(1) \left[\Sigma^{1} \frac{|\epsilon_{n}| |s_{n}|^{n}}{\lambda^{n} \rho n} \right]$$

Now,

$$\sum_{1}^{m} \frac{|\epsilon_{n}||s_{n}|^{k}}{\lambda_{n}\rho_{n}} = \sum_{n=1}^{m-1} \Delta \left(\frac{|\epsilon_{n}|}{\rho_{n}}\right) \sum_{r=1}^{n} \frac{|s_{r}|^{k}}{\lambda_{r}} + \frac{|\epsilon_{m}|}{m} \sum_{r=1}^{m} \frac{|s_{r}|^{k}}{\lambda_{r}}$$
$$= O(1) \left[\Sigma^{(1)} + \Sigma^{(2)} + \Sigma^{(3)}\right]$$

where

$$\Sigma^{(1)} = \sum_{n=1}^{m-1} |\Delta \in_n| \psi_n$$

$$= O(1) \sum_{n=1}^{m-1} \beta_n \varphi_n$$

$$= O(1)$$

$$\Sigma^{(2)} = \sum_{n=1}^{m-1} |\epsilon_{n+1}| \Delta \left(\frac{1}{\rho_n}\right) \quad \rho_n \psi_n = o(1)$$

and

ISSN: 2278-6244

 $\Sigma^{(3)} = |\epsilon_m| \varphi_m = O(1)$

as $m \to \infty$ by the hypothesis of theorem and the property of Lemma. So,

$$\sum \lambda_n^{k-1} |\Sigma_2|^k + \sum^1 \lambda_n^{k-1} |\Sigma_3|^k < \infty$$

by the reason

$$\Sigma^1 \lambda_n^{k-1} |T_n|^k < \infty$$

where $\lambda_{n+1} > \lambda_n$, then we get

$$T_n = \frac{1}{\lambda_n \lambda_{n+1}} \sum_{v=n-\lambda_{n+1}}^{n+1} (\lambda_v + v - n - 1) \frac{\epsilon_v \ v a_v}{v \rho_v}$$

$$T_n = \frac{1}{\lambda_n \lambda_{n+1}} \sum_{v=n-\lambda_{n+1}}^{v} (\lambda_v + v - n - 1) v a_v \frac{\epsilon_v}{v \rho_v}$$

Applying the Abel's transformation we get

$$T_n = [\Sigma_1^1 + \Sigma_2^1 + \Sigma_3^1]$$

where

$$\Sigma_1^1 = \frac{1}{\lambda_n 2} \sum_{v=n-\lambda_{n+2}}^n \Delta \left\{ (\lambda_n + v - n - 1) \frac{\epsilon_v}{v \rho_v} \right\} v s_v$$

$$\Sigma_2^1 = \frac{\epsilon_{n+1} s_{n+1}}{\lambda_{n+1} \rho_{n+1}}$$

and

$$\Sigma_3^1 = \frac{\epsilon_n - \lambda_{n+2} s_n - \lambda_{n+1}}{\lambda_n \lambda_n - \lambda_{n+1} \rho_{n-1} \lambda_{n+2}}$$

So it is sufficient to show that

$$\Sigma'' \lambda_n^{k-1} |\Sigma_r^l|^k < \infty \quad r = 1,2,3$$

we get

$$\begin{split} & \sum \|\lambda_n^{k-1}|\Sigma_r'| \\ &= \sum \|\frac{1}{\lambda_n^{k+1}}| \sum_{v=n-\lambda_{n+2}}^v \Delta \left\{ (\lambda_v + n - v - 1) \frac{\epsilon_v}{v \rho_v} \right\} v s_v |^k \\ &\leq \sum \|\frac{1}{\lambda_n^{k+1}} \left[\sum_{v=n-\lambda_{n+2}}^v \left| \Delta \left\{ (\lambda_v + n - v - 1) \frac{\epsilon_v}{v \rho_v} \right\} v s_v \right|^k \right] \\ & \left| \Delta \left\{ (\lambda_v + n - v - 1) \frac{\epsilon_v}{v \rho_v} \right\} \right| \leq \lambda_v \Delta \left(\frac{|\epsilon_v|}{v \rho_v} \right) + \left(\frac{|\epsilon_v|}{v \rho_v} \right) \end{split}$$

such that

$$\Sigma \lambda_n^{k-1} |\Sigma_1^{1k}|^k = O(1) [\Sigma_{11}' + \Sigma_{12}'']$$

where

$$\Sigma_{11}^{'} = \Sigma^{"} \frac{1}{\lambda_n^{k+1}} \left\{ \sum_{r=n-\lambda_{n+2}}^{n} \lambda_n \Delta \left(\frac{|\epsilon_v|}{v \rho_v} \right) v |s_v|^k \right\}$$

$$\Sigma_{12}^{'} = \Sigma^{"} \frac{1}{\lambda_n^{k+1}} \sum_{v=n-\lambda_{n+2}}^{\lambda_{n+2}} \frac{|\epsilon_v| |s_v|^k}{\rho_v}.$$

Now we discuss

$$\Sigma_{11}^{'} = \Sigma_{11}^{'(1)} + \Sigma_{11}^{'(12)} + \Sigma_{11}^{'(3)}$$

where

$$\Sigma_{11}^{'(1)} = \Sigma'' \frac{1}{\lambda_n^{k+1}} \left\{ \sum_{v=n-\lambda_{n+2}}^n \frac{\lambda_v |\Delta \epsilon_v| |s_v|^k}{\rho_v} \right\}$$

$$= O(1) \Sigma'' \frac{1}{\lambda_n^{k+1}} \sum_{v=n-2}^n \frac{\lambda_v \beta_v |s_v|^k}{\rho_v}$$

ISSN: 2278-6244

 $= O(1) \sum_{v=1}^{\infty} \frac{|s_v|^k \lambda_v - {}^{\beta} v}{\rho_v} \sum_{n>v}^{"} \frac{1}{\lambda_n^{k+1}}$

$$= O(1) \sum_{v=1}^{\infty} \frac{|S_v| \beta_v}{\rho_v}$$

= 0 (1) as we have proved.

Now,

$$\Sigma_{11}^{'(2)} = \Sigma'' \lambda_n^{\frac{1}{k+1}} \left\{ \sum_{r=n-\lambda_{n+2}}^n \frac{|\epsilon_{v+1}| |s_v|^k}{(v+1)\rho_v} \lambda_v \right\}$$

$$= O(1)\Sigma''\lambda_n^{\frac{1}{k+1}} \left\{ \sum_{v=n-\lambda_{n+2}}^n \frac{|\epsilon_v||s_v|^k \lambda_v}{v\rho_v} \right\}$$

$$= O(1) \sum_{v=1}^{\infty} \frac{|\epsilon_v| |s_v|^k}{v \rho_v} \lambda_v \sum_{n \ge v}^{"} \frac{1}{\lambda_n^{k+1}}$$

$$= O(1) \sum_{v=1}^{\infty} \frac{|\epsilon_v| |S_v|^k}{v \rho_v} = O(1) \text{ as we have proved.}$$

Now,

$$\Sigma_{11}^{'(3)} = \Sigma'' \frac{1}{\lambda_n^{k+1}} \sum_{v=n-\lambda_{n+2}}^{n} |\epsilon_{v+1}| |s_v|^k \lambda_v \Delta \left(\frac{1}{\rho_v}\right)$$

$$= O(1)\Sigma''\lambda_n^{\frac{1}{k+1}} \sum_{v=n-\lambda_{n+2}}^n \left\{ |\epsilon_v| |s_v|^k \lambda_v \Delta\left(\frac{1}{\rho_v}\right) \right\}$$

$$= O(1) \sum_{v=1}^{\infty} |\epsilon_v| |s_v|^k \lambda_v \Delta\left(\frac{1}{\rho_v}\right) \sum_{n>v}^{"} \lambda_n^{\frac{1}{k+1}}$$

$$= O(1) \sum_{v=1}^{\infty} |\epsilon_v| |s_v|^k \lambda_v \Delta\left(\frac{1}{\rho_v}\right) = O(1) \text{ as we have proved}$$

ISSN: 2278-6244

so,

$$\Sigma_{11}^{'} = \Sigma_{11}^{'(1)} + \Sigma_{12}^{'(2)} + \Sigma_{13}^{'(3)} = 0(1)$$

Now

$$\Sigma'_{12} = \Sigma'' \frac{1}{\lambda_n^{k+1}} \sum_{v=n-\lambda_{n+2}}^{n} \frac{|\epsilon_v| |s_v|^k}{\rho_v}$$

$$= O(1) \sum_{v=1}^{\infty} \frac{|\epsilon_v| |s_v|^k}{\rho_v} \sum_{n \ge v}^{"} \frac{1}{\lambda_n^{k+1}}$$

$$= O(1) \sum_{v=1}^{\infty} \frac{|\epsilon_v| |s_v|^k}{\rho_v}$$

= O(1) as we have proved.

So,

$$\Sigma^{''} \quad {}_{n}^{k-1} |\Sigma_{1}^{'}|^{k} = O(1)[O(1) + O(1)]$$

by this reason

$$\Sigma^{''}\lambda_{n}^{k+1}|\Sigma_{1}^{'}|^{k}<\infty$$

Similarly,

$$\Sigma'' \lambda_n^{k+1} |\Sigma_2'|^k = O(1)$$

as we have proved already for Σ_2 .

In the end

$$\Sigma^{''}\lambda_n^{k-1}|\Sigma_3^{'}|^k=O(1)$$

as we have proved already for Σ_3 . In this way proved theorem.

REFERENCES

[1] LEINDLER, L. : On the absolute summability factors of Fourier series, Acta.

ISSN: 2278-6244

Sci. Math., Szeged 28, 323-336 (1967).

ISSN: 2278-6244 Impact Factor: 7.436

[2] MISHRA, K.N.: On absolute Cesaro summability factors of Infinite Series
 AND SHRIVASTAVA, Portugaliae Math. Vol. 42 Fase 1 (1983-84).
 R.S.L.

[3] SHARMA, N.K, AND : On $|v,\lambda|_k$ summability factors of Infinite series (in press). SINHA, R.