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Abstract: This paper presents a way of eliminating overshoot in a DC servomotor using a 

model reference adaptive control system, which is a controller in the Neural Network (NN) 

toolbox. A Speed and Position based MRAC system and a Proportional Integral Derivative 

(PID) controller were used to control a physical DC servomotor with known parameters. This 

was achieved through physical measurements by configuration of the servo driver, the 

computer system and the DC motor using, Simulink toolbox and Microsoft Windows 

Software Development kits (SDKs) 7.  The reference input to the system was a step function 

input. The purpose is to determine the time-response of the developed system also, the 

stability of the system and its ability to reach one stationary state when starting from 

another. Results from physical measurements show that MRAC system was able to 

accommodate nonlinearities associated with DC motor and yet, maintain good control of the 

motor without voltage overshoot as against the PID controller. 
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1.0  INTRODUCTION  

The most common actuator in control systems is a Direct current (DC) motor, apparently the 

choice for implementation of advanced control algorithms in most electric drives. Lately, 

developments in magnetic materials, microprocessors, semiconductor technology and 

mechatronics etc. had provided a wide range of applications for high performance electric 

motors in various industrial and automated processes. For high performance drive 



  International Journal of Advanced Research in  ISSN: 2278-6244 
 IT and Engineering  Impact Factor: 6.690 
 

Vol. 6 | No. 3 | March 2017 www.garph.co.uk IJARIE | 15 

applications such as robotics, machine tools, conveyors, rolling mills, etc., high precision in 

speed and position control is paramount. DC servomotors are mostly the choice; they are 

widely deployed in these applications due to their reliability and ease of control because of 

the decoupled nature of the field and the armature magneto motive force (Sheel, 

Chandkishor, and Gupta, 2010). 

DC Servomotor systems have two outputs that can be controlled, angular speed and angular 

position. Improving the system’s efficiency comes from the proper control of both outputs 

together, or by controlling one of them at a time and, hence, two identification plants can 

be derived for each one. For some applications, such as disk drives and robotics, position 

control is more important than speed control (Makableh, 2011). One of the parameters that 

negatively affect the efficient control of DC servomotor is overshoot. In the context of 

control theory, overshoot can be regarded as an output exceeding its final steady state 

value. Overshoot could be seen as a form of distortion that affects the rise time, settling 

time etc. of an operating plant under step input response. Reviews show that conventional 

controllers such as Proportional Integral Derivative (PID) are not that capable of handling 

nonlinearities associated with DC motors and at the same time, mitigate the effects of 

overshoot. 

Thus, one of the drawbacks of conventional tracking controllers for electric drives is that 

they are unable to capture the unknown load characteristics over a widely ranging operating 

point. Apparently, this makes tuning of controller parameters very difficult. There are many 

ways to overcome these difficulties but, generally there are four basic way that are common 

to adaptive controller; (1) Model reference adaptive control (MRAC), (2) Self tuning, (3) Dual 

control and (4) Gain scheduling. Usually load torque is a nonlinear function of a combination 

of variables such as speed and position of the rotor. Therefore, identifying the overall 

nonlinear system through a linearized model around a widely varying or changing operating 

point, under fast switching frequencies, can introduce errors which can lead to unstable or 

inaccurate performance of the system (Astron and Wittenmark, 1989). 

2.0  THEORY  

2.1 Basic Operation of DC Motors 

The dc motor is a torque transducer that converts electric energy into mechanical energy. It 

has the electrical and the mechanical representation. The torque developed on the motor 
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shaft is directly proportional to the field flux and the armature current. To substantiate that, 

assume a current-carrying conductor is established in a magnetic field with flux , and the 

conductor is located at a distance r from the center of rotation. The relationship among the 

developed torque, flux  and current ia is  

.    (1a) 

Where; 

= the motor torque (in N-M), , =   the magnetic flux in (in webers),  = the armature 

current (in amperes), = a proportional constant. In addition to the torque developed, 

when the conductor moves in the magnetic field, a voltage is generated across its terminals. 

This voltage is known as the back emf, which is proportional to the shaft velocity, and tends 

to oppose the current flow. The relationship between the back emf and the shaft velocity is: 

.   (1b)  

Where; 

= the back emf (in volts), = the shaft velocity of the motor (in rad/sec). Equations 1a 

and 1b form the fundamentals of the dc-motor operation. 

2.1 Model Reference Adaptive Control (MRAC) 

MRAC is an adaptive servo system in which the desired performance is expressed in terms 

of a reference model, which gives desired response to the reference signal. Generally 

speaking, MRAC is composed of four parts namely; the plant containing unknown 

parameters, a reference model for compactly specifying the desired output of the control 

system, a feedback control law containing adjustable parameters. The adaptation law of 

MRAC systems extracts parameter information from the tracking errors. The online 

computation of this controller, like NARMA-L2, is minimal. However, unlike NARMA-L2, the 

model reference architecture requires that a separate neural network controller be trained 

offline, in addition to the neural network plant model. The controller training is 

computationally expensive, because it requires the use of dynamic backpropagation (Beale, 

Hagan, and Demuth, 2015). On the positive side, model reference control applies to a larger 

class of plant than does NARMA-L2 control. Fig. 1 shows an illustration of a neural network 

(NN) MRAC system. 
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Fig 1 Block diagram of Model Reference Adaptive Control 

Recently, artificial neural networks represent an effective alternative for industrial process 

modeling and control mainly because they can learn nonlinear input/output mapping from 

process data (Narendra and Parthasarathy, 1990). Perhaps, it has been emphasized that 

complete controllability and observability of the process must be assumed for successful 

neural network modeling and control (Saerens and Soquet,1991). More so Narendra and 

Parthasarathy (1990) indicated that considerable progress in nonlinear control theory is still 

needed to obtain rigorous solutions to identification and control problems using neural 

networks. 

2.2 PID Control Systems 

The PID controller is a form of close loop system i.e. with a feedback mechanism. The PID 

control system is achieved by tuning and calculating the error signal between an output 

measured value and a reference value (input), the controller works to minimize the error 

signal or the difference between the output signal and the reference signal to a minimum 

value; such that the output measured value will be as close as possible to the input 

reference signal. 

The mathematical model of the PID controller has been proposed by many authors and is 

represented by: 

     

  (2) 

Where: 

is the controller output signal, is the error signal, is the proportional gain, Ki is 

the integral gain and Kd is the derivative gain. 
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3.1 Modeling the Permanent DC Motor 

DC motors are used extensively in control systems especially in industrial actuators so, it is 

paramount to establish mathematical model for analytical purposes for efficient control 

application of dc motors. The DC motor takes in single input in the form of an input voltage 

and generates a single output parameter in the form of output speed. It is a single-input, 

single-output system (SISO). Figure 2 is the electromechanical representation of a DC motor, 

the diagram is used to develop the system level transfer function that characterize the 

operation or behavior of a DC motor. 

 

Fig 2 Electrical Model of DC Motor 

The armature is modeled as a circuit with resistance Ra connected in series with an 

inductance La and a voltage source ea, and eb representing the back electromotive force 

(emf) in the armature when the rotor rotates. Looking at the diagram of fig 1, it can be seen 

that the control of the dc motor is applied at the armature terminals in the form of applied 

voltage ea (t). It can be deduced that the torque developed in the motor is proportional to 

the air-gap flux and the armature current. The equations that describes the DC servomotor 

behavior as stated by (Kuo and Golnaraghi (2002) thus, 

Tm (t) = Km (t) ɸ ia (t)    (3) 

Since ɸ is constant, equation 3 is in form 

Tm (t) = Ki ia (t)        

Ki ia (t) =      (4) 

Where: 

=motor torque.  ia(t) = armature current.  TL (t) = load torque. = magnetic flux in the 

air gap. km = proportionality constant. Ki = torque constant in N-m/A. =rotor angular 

velocity im = equivalent moment of inertia reflected at the motor shaft . Putting the control 
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input voltage ea (t) into consideration, the cause and effect equations for the motor circuit 

in same fig 4 are: 

.   (5) 

. (6) 

.(7) 

Where: 

la(t) = armature inductance  

Ra = armature resistance.  ea(t) = applied voltage 

= back emf. Kb  = back emf constant 

= rotor angular velocity. Bm  = viscous-friction coefficient. m (t)= rotor displacement 

Jm=rotor inertia. From equations 3 through 6, the applied voltage ea(t)  is considered as the 

cause and Equation 5 considers that the immediate effect due to the applied 

voltage. From Equation 3, armature current ia(t) causes the motor torque  , while in 

Equation 6 the back emf was defined. It can be seen also from Equation 7 that the 

motor torque produced causes the angular velocity and displacement m (t) of the 

rotor respectively. 

The state variables are of the system can be define as  

 Armature current = ia(t) 

 Rotor angular velocity =  

 Rotor angular displacement = m (t) 

It is possible to eliminate all the non-state variables from Equation 3 through 7 by direct 

substitution then present the dc state equation in vector-matrix form as follows: 

.    (8) 
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Note that in the case of Equation 8 above, that TL(t) is handled as a second input to the state 

equations. The transfer function between the motor displacement and the input voltage is 

obtained as thus;  

            (9) 

Note that TL has been set to zero in Equation 9. Fig 2 shows a block diagram of the DC motor 

system for speed control. From the diagram, one can see clearly how the transfer function is 

related to each block. It can be seen from Equation 9 that s can be factored out of the 

denominator and the significance of the transfer function    is that the dc motor is an 

integrating device between these two variables.  is the rotor angular displacement 

Laplace transfer function,  is the input voltage Laplace transfer function and Ωm(s) is 

the transform of angular velocity respectively. From fig 3 also, it can be seen that the motor 

has a built-in feedback loop caused by the back emf Eb. 

 

 

 

 

 

 

Fig 3 Simulink Model of a DC Servomotor in terms of speed 

The back-emf physical represents the feedback of a signal that is proportional to the 

negative of the speed of the motor. From equation 9, it can be noted that back emf constant 

Kb represents an added term to the resistance Ra and the viscous-friction coefficient Bm . 

Effectively, the back-emf effect is equivalent to an electric friction which tends to improve 

the stability of the motor and apparently the stability of the system. 

3.2. DC Motor Equivalent Circuit In Discrete Form 

 Recall that ANN is the modeling tool. So simulation can be  performed on the control of DC 

motor using ANN model, there is need to construct an equivalent DC motor to a discrete 

time model. Effectively, the load torque is assumed as: 

TL =    (10) 



  International Journal of Advanced Research in  ISSN: 2278-6244 
 IT and Engineering  Impact Factor: 6.690 
 

Vol. 6 | No. 3 | March 2017 www.garph.co.uk IJARIE | 21 

Where = a constant 

It is obvious that from equation (10) that load torque is always opposes the direction of 

motion. Note that the choice of load torque here is arbitral because considering load torque 

as one of the functions of a DC motor; it is a common characteristic for most propeller 

driven loads. 

Alternatively, 

 Direct substitution and substitute for position in equations (4), (5) and (10) i.e. rewriting the 

angular velocity , which is the speed in terms of angular displacement  which is 

the position as shown in figure 4. 

 

 

 

 

 

 

 

Fig 4 Simulink Model of a DC Servomotor in terms of Speed and Position 

Deploying direct substitution and substitute for position in equations (4), (5) and (10) i.e. 

rewriting the angular velocity , which is the speed in terms of angular displacement 

 which is the position as shown in figure 3. Then the equations yields; 

.          (11) 

                 (12) 

.          (13)   

Next is to estimate the derivatives of position and current in discrete form using a sampling 

interval of  and forward difference. 

.                (14) 
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.        (15) 

           (16) 

.                       (17) 

.      (18) 

.       (19) 

Next is to evaluate the armature current  in terms angular displacement  which is 

the position here. Then substituting  in terms of   using equations (11) into the 

following equation  from the work of Weerasooriya and El-Sharkawi 

(1991),   to determine the function governing the speed control of a DC motor, gives 

 

. (20) 

Or 

(21) 

Integrating equations (12), (13), (14), (15), (16) and (17) into equation (19) then the input 

voltage in equation (19) can be written as a function of: 

. 

. 

. 

. 

 (22) 
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Effectively, equation (22) forms the relationship between the input voltage  and the 

motor position  at four successive sampling instances. Assume that the term  is 

replaced in equation (22) with desired reference motor position at next instance as 

, and compute the control voltage (the input voltage)  with the following 

equation, then 

.  (23) 

So, if the computed voltage  at sampling instance k is applied, then the resulting motor 

position at instant  will be equal to:  

, i.e. the desired motor position, it effectively takes the following 

forms of input to the ANN 

. = the reference position 

. = Position at first instance 

. = Position at second instance 

. Position at third instance 

4.1 Structure of the ANN controller 

The non-linear controller for this work is the Artificial Neural Network (ANN) Controller. 

Here, the design of ANN incorporated a Feed forward Neural Network (FFNN), which is 

made up of one input layer and one hidden layers with an output layer. The layers 

respectively consist of number of neurons. Each neuron has two functions as: 

 Summing up all the outputs from the previous layers multiply by the corresponding 

weights 

 Performing the nonlinear sigmoidal or linear function on the sum 

During training, errors are back propagated and also minimized using least mean square 

algorithm. The basis for weights connection between the input and hidden layers are based 

on the fact that errors in the output determine the measures of the hidden layer output 

errors. This adjustment of weights between the layers and recalculating the output in an 

iterative process is continued till the error falls below a tolerable level. 

4.2 Training the ANN Controller 



  International Journal of Advanced Research in  ISSN: 2278-6244 
 IT and Engineering  Impact Factor: 6.690 
 

Vol. 6 | No. 3 | March 2017 www.garph.co.uk IJARIE | 24 

The training data was chosen taking into consideration the mechanical and hardware 

limitations of the motor. And that lead to the following constrained operating range as 

defined below (Weerasooriya and El-Sharkawi,1991): 

 ω(k)-ω(k-1)<0.1 

 ω(k)<30.0 rad/s 

 v(k)<100.0v 

The corresponding target voltage was then generated by using these speed values. The 

offline training of the controller is performed with this training data using the back-

propagation algorithm.  The back-propagation training algorithm is based on the principle of 

minimization of a cost function of the outputs and the target of the FFNN. 

The input and output of this network is guided by some basic equations, the net input of the 

jth neuron of the hidden layer at the time instant n is given as follows (Haykins, 1999): 

.              (24) 

Where  is the connecting weight between the ith neuron at the input layer and the jth 

neuron at the hidden layer. The  is the ith input, and N is the number of inputs. Then, the 

output from the jth neuron from the hidden layer at nth instant is given by: 

       (25) 

From equation 25,  is the bias of the jth neuron and  is the activation function acting 

on each neuron at the hidden layer. The activation function can be tan sigmoidal, log 

sigmoidal or linear. The functions are described as follows (Beale, Hagan and Demuth, 

2015): 

            (26) 

            (27) 

                        (28) 

In the above equations x represents the input to the activation function. It follows that the 

net input of the kth neuron of the output layer at time instant n is given by: 

    (29) 

Where M is the number of neurons in the hidden layer and  is the weight between 

the jth neuron at the hidden layer and kth neuron at the output layer respectively. It 
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therefore also followed that output from the kth neuron at the output layer at time instant n 

can be presented in the form: 

       (30) 

Where  = the activation function of the output layer and  

 = the bias of the kth  neuron at the output layer. 

It is also important to put into consideration how the weight is updated at various levels 

during the network training. To do that, there is a basic equation that describes the 

updating of the weight through the error signal at the output of the neuron k at the 

iteration and it is given as follow:  

          (31) 

Where  represents the desired output for neuron k.  

5.0 ANN MODEL OF DC MOTOR 

Before ANN can be used to control the operation of the DC motor, the DC motor being the 

plant must also be modeled using ANN tool. From equation 23 where  is a function of 

speed at successive time intervals k+1, k and k-1 for any required trajectory, what happens 

is that the ANN Inverse Model (AIM) generates an output that is proportional to the voltage 

required at the input of the DC motor to produce these speed at the time intervals. Here, 

the output-input mapping is many to one perhaps, disturbances and other uncertainties 

may lead to the input-output mapping to become one-to-many leading to degradation in 

the control performance. Though, the AIM relies on the accuracy of the model used for the 

controller design so, the research will not worry about the degradation. The block diagram 

of the speed based AIM is shown in fig 5. 

ANN 
INVERSE 
MODEL

Motor Speed
Motor 

Voltage

 

Fig 5 Block Diagram of The AIM 

5.1 Structure of The AIM 

The AIM for this research work is made up of three inputs and a single output structure for 

the three successive speed instances. Based on equation 23, the three inputs are ; 

Speed at first instance ; speed at second instance, ;speed at third instance 

and  the output is the Va(k) which is the motor terminal output voltage Vt(k) from fig 6. 
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ωm(k)
Vt(k)

Target
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three 
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ωm(k+1)

ωm(k-1)

 

Fig 6 the structure of AIM 

So based on the same equation 23, the nonlinear function (f.) can be presented in the 

following form: 

    (32) 

The values of  apparently form the independent inputs of the 

ANN and the corresponding output as well is generated from equation 28. 

5.2 Evaluating The Performance of The AIM 

The generated  inputs and the corresponding targets Va(k) are 

used for offline training of the AIM  to represent any DC servomotor with unknown 

parameters. From figure 6, it could be seen that the performance error is represented by 

ei(k). In evaluating the AIM performance, the value of [  for all kT that are elements 

of time from 0 to tf  is minimized, that is; 

              (33)  

Where T is the sampling period and tf is the time for which simulation is performed. The 

terminal voltage (estimated) is given by: 

t        (34) 

Once the DC motor is excited by an input signal, the output from the DC motor which is 

speed in this context is fed into the AIM as an input. The terminal voltage i.e. t(k-1) is 

compared with the actual motor output ei(k) for a common excitation signal. Then the mean 

square value of the error ei(k) between the actual motor input and the estimated output 

voltage yields the performance error of the AIM.  
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Fig 7 Structure of Speed and Position based MRAC Control System 

6.0 THE PID CONTROLLER MODEL  

The PID controller was achieved using equation 2 to get the best possible gains. Table 1 

shows the DC motor parameters.  

Table 1: DC Motor Parameter Values (Weerasooriya and El-Sharkawi, 1991) 

Parameters Values 

Moment of Inertia J 0.064kg-m2 

Damping Coefficient b 0.03475Nm/s 

Torque Constant Kt 3.475Nm A-1 

Electromotive force Constant Ke 3.40NmA-1 

Electrical Resistance Ra 7.56Ω 

Electrical Inductance La 0.055H 

 

The neural network controller is a speed and position based MRAC system as shown in fig 7. 

Figure 8 shows the construction of the PID controller in Simulink. 

 

Fig 8 The PID Simulink Model 
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The PID controller is incorporated in the DC motor Simulink model to determine the effect 

of the PID controller on the system as shown in figure 9. 

 

Fig 9: DC Motor Simulink Model with PID Controller 

6.2 Measurement and Results 

The Speed and Position based MRAC system and the PID controller system were used to 

drive a physical DC motor. The reference input to the system is a step function input. The 

essence of this is to determine the stability of the systems and their ability to reach one 

stationary state when starting from another. Step input value of 180 (degrees) were chosen 

arbitrary and used as input to both MRAC control system and the PID controller. The output 

time responses were graphed for both controllers to determine the existence of overshoot 

in voltage as shown in figures 9 and 10. 

It could be observed from figure 9, that the Speed and Position based MRAC system was 

able to achieved steady state at about 0.56 sec without overshoot while the PID controller 

from figure 10, achieved steady state at about 2.41sec with voltage overshoot. 

 

 

 

 

 

 

 

 

 

Fig 10 Step Input Response of Speed And Position Based MRAC System (180 Degrees) 
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Fig 11 Step Input Response of PID Controller (180 Degrees) 

CONCLUSION  

Results from measurements show that the conventional PID controller was not able to 

accommodate the nonlinearities associated with the DC servomotor which lead to the 

distortion in the input voltage to cause overshoot between rise time and settling time. 

Perhaps, the speed and position based controller which is adaptive in nature, was able to 

accommodate those nonlinearities and yet maintain good control of the DC motor without 

voltage overshoot. 
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