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Abstract: Breast cancer is one of the leading causes of death among women all around the 

world. Therefore, true and early diagnosis of breast cancer is an important problem. The 

Lagrange interpolation was used in this study for the diagnosis of breast cancer. The 

Wisconsin Breast Cancer dataset (WBCD), derived from the University of California Irvine 

machine learning database, was used for the purpose of testing the proposed method was 

determined as 98%. In this method, we are looking for two equations by Lagrange 

interpolation because of two classes that are exist in breast cancer data set. We receive each 

sample and it will define rate of vicinity it’s to each class (malignant or benign). So, the class 

of mentioned sample will be recognized. Moreover, the most appropriate attributes for the 

diagnosis of breast cancer were determined from the WBCD in this study. It is considered 

that the proposed method will be useful in similar medical practices. 
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1- INTRODUCTION 

The breast is an appendage of the skin covering the external part of our body and it includes 

lactating glands. Breast cancer is defined as the existence of cells progressing abnormally 

within the tissue of the breast that cannot be controlled. A group of cells growing or 

changing abnormally is called a tumor. Any tumor may be benign (not dangerous) or 

malignant (having the potential for being dangerous) 

Breast cancer is the most common cancer in women in many countries. Most breast cancers 

are detected as a lump/mass on the breast, or through self-examination/mammography [1]. 

Screening mammography is the best tool available for detecting cancerous lesions before 

clinical symptoms appear. Surgery through a biopsy or lumpectomy have been also been the 

most common methods of removal. Fine needle aspiration (FNA) of breast masses is a cost-

effective, non-traumatic, and mostly invasive diagnostic test that obtains information 

needed to evaluate malignancy. Recently, a new less invasive technique, which uses super-

cooled nitrogen to freeze and shrink a non-cancerous tumor and destroys the blood vessels 

feeding the growth of the tumor, has been developed [2] in the USA. Several Artificial 

Intelligence (AI) techniques including neural networks and fuzzy logic [3] are successfully 

applied to a wide variety of decision-making problems in the area of medical diagnosis. In 

this paper we examine the performance of Numerical method based on Lagrange 

interpolation for detection of breast cancer data. 

The Wisconsin Breast Cancer datasets (WBCDs), derived from the University of California 

Irvine (UCI) machine learning database, were used for the purpose of testing the proposed 

model. As a result, we are of opinion that the proposed model will be a tool for assisting 

specialists in making decisions with respect to the patients at the final stage. This paper is 

organized as follows. Section 2 describes the characteristics of breast cancer data set. 

Section 3 describes prior studies. Section 4 provides details of the proposed method. The 

final section provides some conclusions relating to the performance of Lagrange 

Interpolation when applied to the breast cancer data. 

2- DATASET 

The WBCD, the dataset used in this study, was derived from the UCI machine learning 

database [4]. The dataset consists of 699 samples that were collected by Dr.Wolberg at the 

University of Wisconsin-Madison hospitals. A total of 16 instances were discarded from the 
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dataset since they had missing observations and the RS + EML model was tested with the 

remaining 683 cases. The WBCD consists of 9 features and the values thereof range 

between 1 and 10. The target attribute was coded as benign (1 = benign) and malignant (0 = 

malignant). There are 444 benign cases and 239 malignant cases in the dataset. The 

attributes available in the dataset are detailed in Table 1. 

Table 1. WBC data description of the attributes 

feature Code Domain Mean Standard deviation 
Clump Thickness A1 1-10 4.44 2.83 

Uniformity of cell size A2 1-10 3.15 3.07 
Uniformity of cell shape A3 1-10 3.22 2.99 

Marginal adhesion A4 1-10 2.83 2.86 
Single epithelial cell size A5 1-10 2.23 2.22 

Bare nucleoli A6 1-10 3.54 3.64 
Bland chromatin A7 1-10 3.45 2.54 
Normal nucleoli A8 1-10 2.87 3.05 

Mitoses A9 1-10 1.60 1.73 
 

3. STUDIES FOR THE DIAGNOSIS OF BREAST CANCER 

When the performed studies are examined, it is observed that the machine learning studies 

carried out using the WBCD are widespread and that high success rates were achieved in all 

of these performed studies.  

Ster and Dobnikar [5] achieved a classification success rate of 96.80% using linear 

discriminate analysis. Pena-Reyes and Sipper [6] achieved a classification success rate of 

97.36% in the study that they performed using a hybrid model based on fuzzy logic and the 

genetic algorithm (GA). 

The classification success rate achieved in the study by Setiono was 98.10%. Abonyi and 

Szeifert achieved a classification success rate of 95.57%. 

Using the controlled fuzzy set method. A classification success rate of 96.66% was achieved 

in the study by Kim et al. using a fuzzy rule-based method. Sahan et al. [1] achieved a 

success rate of 99.14% using a hybrid model based on fuzzy artificial immunity and K-

nearest neighbor in their studies. Polat and G�unes [2] achieved a success rate of 98.53% by 

least squares support vector machine (LS-SVM) in their studies.  
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4. LAGRANGE INTERPOLATION AND PRE-CALCULUS MATHEMATICS 

Just as two points determine a line, three (non-collinear) points determine a unique 

quadratic function, four points that do not lie on a lower degree polynomial curve 

determine a cubic function and, in general, 1n +  points uniquely determine a polynomial of 

degree n, presuming that they do not fall onto a polynomial of lower degree.  The process of 

finding such a polynomial is called interpolation and the two most important approaches 

used are Newton’s interpolating formula and Lagrange’s interpolating formula. Each has its 

own advantages and disadvantages, as we will discuss. In this article, we show how both 

approaches can be introduced and developed at the precalculus level in the context of 

fitting polynomials to data.   

The major drawback to Newton’s interpolation formula is the fact that it requires uniform 

spacing for the x-values in a set of data. An alternative approach is Lagrange’s interpolation 

formula, which does not require uniform spacing. But, it carries with it a cost – it is a more 

complicated formula that usually involves considerably more computational effort. 

Suppose that we have three points 0 0( , )x y , 1 1( , )x y  and 2 2( , )x y , where all of the ix  are 

different. The observation in the previous paragraph suggests that we may break up the 

quadratic function ( )f x  into three quadratic functions 0 ( )f x , 1( )f x  and 2 ( )f x  by looking at 

the values of the function at 0x , 1x  and 2x  in the following way: 

 

 

 

 

 

Look at the above display vertically. We pair each of the three numbers 0y , 0, and 0 in the 
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The sum of 0 ( )f x , 1( )f x  and 2 ( )f x  is the desired function that passes through the original 

three points 0 0( , )x y , 1 1( , )x y , and 2 2( , )x y . 

More generally, the quadratic Lagrange interpolating polynomial that passes through the 

points 0 0( , )x y , 1 1( , )x y  and 2 2( , )x y  is 

1 2 0 2 0 1
2 0 1 2

0 1 0 2 1 0 1 2 2 0 2 1
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The ideas discussed here can be extended if there are more than three given points. For 

instance, the four points 0 0( , )x y , 1 1( , )x y , 2 2( , )x y , and 3 3( , )x y  determine a cubic 

polynomial (assuming that all the ix  are distinct and the points do not lie on a line or a 

parabola). A simple extension of the Lagrange interpolation formula used above gives a 

simple way to construct this cubic. The third degree Lagrange interpolating polynomial 

3( )L x  is composed of four cubic components 0 ( )f x , 1( )f x  2 ( )f x  and 3( )f x , each 

constructed in the comparable way. The result is 
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Notice that, at each of the four interpolating points, only one of the four cubic components 

is not automatically zero and so contributes precisely the associated value of y at each of 

those points. The other three cubic components must contribute zero at these points. For 

instance, at 0x x= , only the first component is non-zero and it contributes 0y  to the sum. 

That is, 3 0 0( )L x y= . 

The equation of the parabola that passes through the three points (1,2) , (3,8)  and (6,4)  is 

therefore 

   ( 3)( 6) ( 1)( 6) ( 1)( 3)
( ) 2 8 4

(1 3)(1 6) (3 1)(3 6) (6 1)(6 3)

x x x x x x
f x

− − − − − −
= + +

− − − − − −
 

or  

 21 4 4 13 97 18
( ) ( 3)( 6) ( 1)( 6) ( 1)( 3)

5 3 15 15 15 5
f x x x x x x x x x= − − − − − + − − = − + − . 
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Figure 7 shows ( )f x  along with its three component functions 0 ( )f x , 1( )f x  and 2 ( )f x .  

Let’s focus on the three solid dots that represent the given points.  First, consider the point 

(1,2) .  Notice that only the graphs of ( )f x  and 0 ( )f x  pass through this point while the 

other two curves go through the x-intercept at 1x = .  Similarly, only the graphs of ( )f x  and 

1( )f x  meet at (3,8) , while the other two curves have the x-intercept at 3x = .  Finally, only 

the graphs of ( )f x  and 2 ( )f x  intersect at (6,4) , while the other two share the x-intercept 

at 6x = . 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

This formula 

( 3)( 6) ( 1)( 6) ( 1)( 3)
( ) 2 8 4

(1 3)(1 6) (3 1)(3 6) (6 1)(6 3)

x x x x x x
f x

− − − − − −
= + +

− − − − − −
 

is an example of the quadratic Lagrange interpolating formula and is named after Joseph 

Louis Lagrange, a famous Italian-born French mathematician of the 18th century [1].  More 

generally, the quadratic Lagrange interpolating polynomial that passes through the points 

0 0( , )x y , 1 1( , )x y ,  and 2 2( , )x y  is 
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Figure 7: The three component quadratic functions of ( )f x  
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The ideas discussed here can be extended if there are more than three given points.  For 

instance, the four points 0 0( , )x y , 1 1( , )x y , 2 2( , )x y  and 3 3( , )x y  determine a cubic polynomial 

(assuming that all the ix  are distinct and the points do not lie on a line or a parabola). A 

simple extension of the Lagrange interpolation formula used above gives a simple way to 

construct this cubic.  The third degree Lagrange interpolating polynomial, 3( )L x , is 

composed of four cubic components 0 ( )f x , 1( )f x , 2 ( )f x  and 3( )f x , each constructed in 

the comparable way.  The result is 
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Notice that, at each of the four interpolating points, only one of the four cubic components 

is not automatically zero and so contributes precisely the associated value of y at each of 

those points.  The other three cubic components must contribute zero at these points.  For 

instance, at 0x x= , only the first component is non-zero and it contributes 0y  to the sum.  

That is, 3 0 0( )L x y= . 

The authors also provide (URL here) an interactive spreadsheet to investigate graphically 

and numerically the way in which the linear, quadratic, and cubic Lagrange polynomials are 

constructed out of their component functions for user-defined sets of data [7]. 

5. CONCLUSION 

In this paper, we examined the performance of Numerical method based on Lagrange 

interpolation with no time-consuming tuning procedures. We created two equations by 

Lagrange interpolation. We could recognize class of each sample by 10-fold crossing 

method. Rate of recognize was about 98%. This amount of rate is improvable by some 

preprocessing algorithms. Of course, we did not use these methods. We replaced value 1 

instead of missing values. 
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