
 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.690

Vol. 6 | No. 7 | July 2017 www.garph.co.uk IJARIE | 13

OPEN SOURCE RULES FOR REAL-TIME PROTECTION OF WEB SERVER

Ekaterina Dudin, Asstt. Prof., PhD, University of Telecommunications and Post, Sofia,

Bulgaria

Anna Otsetova, Asstt. Prof., PhD, University of Telecommunications and Post, Sofia, Bulgaria

Abstract: Modern web-based applications often remain open for hacker attacks and

vulnerabilities of the server operating system. This fact requires the additional protection of

the web server and the software it uses. This paper presents the main types of hacker

attacks and the ability to prevent them using ModSecurity-based protection rules provided

by Open Web Application Security Project. The ModSecurity modul, applying a set of rules for

protection by inspecting incoming traffic and the response to these requests by the server

was discussed. Practical results of their impact on various attacks - HTTP (fingerprinting),

DoS (Denial of Service), DDoS (Distributed Denial of Service), SQL injections, etc. were

presented.

Keywords: ModSecurity, Rules, HTTP fingerprinting, DoS, DDoS, SQL injections

INTRODUCTION

Attacks to modern web applications are characterized by a different approach, scope and

purpose [3]. To achieve information security of modern web applications, the following

options are use:

 Firewalls;

 Administrative accounts for access to databases;

 Terminate access by using the Internet Protocol Message Protocol (ICMP) and Simple

Network Management Protocol (SNMP);

 Providing protection for both the operating system and the used applications;

 Regular updates and patches on servers,

 Checking and validating the input data in order to verify code.

In order to ensure stable protection of a web server, it is necessary to periodically assess the

known vulnerabilities, in parallel with the updating of the software used and the regular

updating of the used technologies [6].

This paper proposes the use of open source real-time server protection policies provided by

the Open Web Application Security Project (OWASP).

The purpose of the report is to offer practical solutions for developing real and complex

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.690

Vol. 6 | No. 7 | July 2017 www.garph.co.uk IJARIE | 14

rules for the protection of a real-time web server.

BASIC WEB SERVER ATTACKS

The most common hacker attacks on modern web servers are [10]:

1. HTTP fingerprinting attacks.

Each server is characterized by its unique profiling. This circumstance enables the

identification of both the type and the version of the software that is used [7]. HTTP

fingerprinting attacks are uniquely identifiable (on the fingerprint principle). To scan for

HTTP attacks, programs such as Httprint (operating under Windows, Linux, and Mac OSX

Httprecon) are used [2].

2. DoS (Denial of Services).

The purpose of a DoS attack is to block the server by filling its operating memory and fully

occupying its resources. The sender sends a large number of immediate requests, thus

making it difficult to service the real users [3, 9]. The fact that attacks on the server are

multiple queries from one user makes it easier to protect.

3. DDoS (Distributed Denial of Service).

DDoS attacks aim to make the server resources inaccessible for a certain period of time or

permanently. In these cases, the server does not distinguish the malicious from the

legitimate request, since both types of requests use the same protocols and ports [2]. The

main steps to prevent their action are:

 Ensuring bandwidth surplus for incoming traffic - this is one of the easiest ways to

protect a server from lower-level DDoS attacks, but this approach is costly;

 Using an Intrusion Detection System (IDS);

 Using a product to protect against DDoS attacks. Several manufacturers offer devices

designed specifically to detect and provide DDoS protection and prevention that are

specifically designed to detect and frustrate the DDoS attacks;

 Back up Internet connection with a separate base with Internet addresses for critical

users. This alternative is used in case the primary chain is overloaded with malicious

queries.

Unlike DoS attacks, DDoS are sent from hundreds of sources simultaneously, this

circumstance make protection complex and even in some cases impossible [7]. This paper

does not offer comprehensive DDoS attack protection rules, as DDoS attacks are filtered at

the internet provider level.

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.690

Vol. 6 | No. 7 | July 2017 www.garph.co.uk IJARIE | 15

4. SQL injections - a code injection technique used to attack a web application without

filtration or other protection methods [8]. This type of attack allows the use of the database

information on the server [2].

5. Shell command execution - a combined technique for achieving maximum effect. The

effects of these attacks consist of three basic steps [7, 12]:

First step:

Select applications vulnerable to SQL injection, and then create a .php extension file that

records the desired content of the attacker.

Step Two:

Create a file containing the System command ($ _ REQUEST ['cmd']).

Step Three:

Deleting server content - www.site.com/exec.php?cmd=rm-rf/.

6. Attack Brute force attacks - used to break passwords by using all possible combinations

of letters, numbers and characters set in the attack algorithm. An effective protection

measure for this type of attack is to limit the number of attempts from one source to

identify a user [5].

OPEN SECURITY POLICIES USAGE

ModSecurity is a web-based firewall application [9]. It controls inbound and outbound data

streams by applying a set of real-time protection rules. The principle of this module is

presented in Figure 1 [1].

Fig. 1. ModSecurity

When detecting suspicious traffic or abnormal behavior on the part of the user, ModSecurity

acts as a borderline that verifies malicious content by skipping or blocking requests received

according to the result of the previous step. ModSecurity activates procedures and offers a

number of options, including some injecting content into communication, as well as a full

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.690

Vol. 6 | No. 7 | July 2017 www.garph.co.uk IJARIE | 16

HTTP transaction entry [1, 2].

The structure of the archive and the access to these rules are presented on the OWASP

Foundation's official website: https://github.com/SpiderLabs/owaspmodsecurity-crs [11].

The main benefits of using these policies are:

Flexibility when creating and editing security rules - using text editors such as notepad, vi,

nano, emacs, etc. [4, 6].

 Possibility to create own rules,

 An opportunity to develop comprehensive and strong protection rules.

When an attack is detected, the ModSecurity module provides the option of selecting a user

action option [11]:

 recording the information in a log,

 blocking incoming traffic,

 sending an e-mail to the site administrator,

 sending commands to the server operating system,

 running a certain external script file.

PRACTICAL IMPLEMENTATION OF COMPLEX RULES FOR PROTECTION

ModSecurity is compatible with Apache Foundation, Nginx, and Microsoft Internet

Information Services (IIS).

This paper proposes the use of a virtual container installed with OS Ubunto 14.04.3, Apache

2.4.27, PHP, MySQL and OWASP ModSecurity Core Rule Set (CRS) Version 3. In addition, a

WordPress system is installed to provide additional protection from common attacks and

specific vulnerabilities.

For the purpose of our paper, the following ModSecurity configuration was used:

root@example:/etc/modsecurity# tree

modsecurity_crs_10_setup.conf

modsecurity_crs_11_dos_protection.conf

server-baner-protection.conf

shell-exec-block.conf

sql-injection-block.conf

wp-brute-force-block.conf

1. Brute Force Attack Protection

The following logic is suggested - when entering a user and password, the server responses

https://github.com/SpiderLabs/owaspmodsecurity-crs%20%5b11

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.690

Vol. 6 | No. 7 | July 2017 www.garph.co.uk IJARIE | 17

have the following statuses:

 200 for wrong password and return page to login,

 302 Redirect - redirecting to the administrative part when correctly identified to the

system,

 401 - deny access and log into the log file of an "ip address blocked" message.

Applying this mechanism we check the status of the response to the client and provide the

opportunity to count wrong attempts. Upon reaching a certain limit, the host is blocked for

a certain time (for example, for 5 minutes - 10 attempts). When sending 10 POST queries to

/wp-login.php, the server responds to status 401, blocking the attacker and writing the log

file data to the server.

 ==> /var/log/apache2/wp-access.log <==

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:15 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

192.168.254.6 - - [12/Une/2017:09:14:16 +0200] "POST /wp-login.php HTTP/1.1" 200 3601

 ==> /var/log/apache2/modsec_audit.log <==

blog.example.dev 192.168.254.6 - - [12/ Une/2017:09:14:15 +0200] "POST /wp-login.php

HTTP/1.1" 401 458 "-" "-" VsAkrH8AAQEAABF@0vUAAAAB "-" /20160214/20160214-

0854/20160214-085436-VsAkrH8AAQEAABF@0vUAAAAB 0 1110

md5:0e2b472e2caf97d6a685435ef42b058e

 ==> /var/log/apache2/wp-access.log <==

192.168.254.6 - - [12/Une/2017:09:14:16 +0200] "POST /wp-login.php HTTP/1.1" 401 458

2. Protection from SQL ingection code is expressed in the use of a set of OWASP rules. A

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.690

Vol. 6 | No. 7 | July 2017 www.garph.co.uk IJARIE | 18

content file was used to demonstrate the effectiveness of the rules:

#OR 1

DROP sampletable

DROP/*comment*/sampletable

DR/**/OP/*bypass blacklisting*/sampletable

SELECT/*avoid-spaces*/password/**/FROM/**/Members

SELECT /*!32302 1/0, */ 1 FROM tablename

‘ or 1=1#

‘ or 1=1-- -

‘ or 1=1/*

' or 1=1;\x00

When attempting to deliver a malicious code, the server response is instantaneous, with the

first request:

 ==> /var/log/apache2/wp-error.log <==

[Wen Une 12 09:16:21.680851 2017] [:error] [pid 4477] [client 192.168.254.6] ModSecurity:

Access denied with code 403 (phase 2). Pattern match "(/*!?|*/|[';]--|--

[\\\\s\\\\r\\\\n\\\\v\\\\f]|(?:--[^-]*?-)|([^\\\\-&])#.*?[\\\\s\\\\r\\\\n\\\\v\\\\f]|;?\\\\x00)"

at ARGS:test. [file "/etc/modsecurity/sql-injection-block.conf"] [line "18"] [id "981231"] [rev

"2"] [msg "SQL Comment Sequence Detected."] [data "Matched Data: /* found within

ARGS:test: DROP/*comment*/sampletable"] [severity "CRITICAL"] [ver

"OWASP_CRS/2.2.9"] [maturity "8"] [accuracy "8"] [tag

"OWASP_CRS/WEB_ATTACK/SQL_INJECTION"] [tag "WASCTC/WASC-19"] [tag

"OWASP_TOP_10/A1"] [tag "OWASP_AppSensor/CIE1"] [tag "PCI/6.5.2"] [hostname

"blog.example.dev"] [uri "/"] [unique_id "VsAnhX8AAQEAABF9zVgAAAAA"]

 ==> /var/log/apache2/modsec_audit.log <==

blog.example.dev 192.168.254.6 -- [12/Une/2017:09:16:21+0200] "GET

/?test=DROP/*comment*/sampletable HTTP/1.1" 403 279 "-" "-"

VsAnhX8AAQEAABF9zVgAAAAA "-" /20160214/20160214-0906/20160214-090645-

VsAnhX8AAQEAABF9zVgAAAAA 0 1708 md5:e04d1076a86e8d56b7cd506d2581f14d

 ==> /var/log/apache2/wp-access.log <==

192.168.254.6 -- [12/Une/2017:09:16:21+0200] "GET

/?test=DROP/*comment*/sampletable HTTP/1.1" 403 279

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.690

Vol. 6 | No. 7 | July 2017 www.garph.co.uk IJARIE | 19

3. Shell command execution protection

To prevent this type of attack, a "drop" method is used instead of "deny," as a result of the

applied rules, the attacker receives a blank response from the server [7]. In this way, no

resources are assigned to respond to the interrogated request, but the attacker is deluded

(Figure 2).

Fig. 2. Shell command execution protection

4. DoS attack protection is provided by experimental rules by setting the following

configuration parameters for the system: 60 sec time interval, 100 requests in the activation

time interval and 5 min blocking time.

The server response after application of those protection rules is presented in Figure 3.

Fig. 3. DoS attack protection

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.690

Vol. 6 | No. 7 | July 2017 www.garph.co.uk IJARIE | 20

5. HTTP fingerprinting protection with a rule:

SecServerSignature "Microsoft-IIS/6.0"

SecRule &REQUEST_HEADERS:Host "@eq 0" "id:1001,phase:1,deny"

SecRule &REQUEST_HEADERS:Accept "@eq 0" "id:1002,phase:1,deny"

SecRule REQUEST_METHOD !^(get|head|post)$ "id:1003,phase:1,t:lowerCase,deny"

SecRule REQUEST_PROTOCOL !^http/1\.(0|1)$ "id:1004,phase:1,t:lowercase,deny"

Header set X-Powered-By "ASP.NET 2.0"

Header unset Etag

The practical results of applying HTTP fingerprinting protection rules are presented in Figure

4.

Fig. 4. HTTP fingerprinting protection

CONCLUSION

The paper proposes the use of open source security rules provided by the OWASP

Foundation based on the ModSecurity module. Advantages of this system include: easy

installation, compatibility with the most common web servers - Apache, Nginx and

Microsoft IIS and numerous user-friendly rules. Based on the ModSecurity module, real,

complex real-time web server protection rules are presented against breakthrough

techniques and commonly used vulnerabilities in OS Linux. Practical results show that the

selected security module provides Successful and secure server protection by neutralizing

high- and medium-level threat attacks such as HTTP fingerprinting, Shell command, DoS

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.690

Vol. 6 | No. 7 | July 2017 www.garph.co.uk IJARIE | 21

attack, SQL injection and Brute Force.

REFERENCES

1. Lochart, A., (2005), Network Security Hacks, O’Reilly,

https://books.google.bg/books?id=5AiAVtIAKsC&printsec=frontcover&source=gbs_ge_

summary_r&cad=0#v=onepage&q&f=false

2. Scambray, J., Kurtz, G., (2012), Hacking Exposed 7, Network Security Secrets and

Solut ions by Mcclure, Mc Graw Hi l l

3. McClure, St., Scambray, J., Kurtz, G., (2011), Hacking Exposed, Network Security

Secrets and Solutions, Sixth Edition 6th Edition, Mc Graw Hill

4. Barnett, R., Grossman, J., (2001), Web Application Defender's Cookbook, Battling

Hackers and Protecting Users

5. Magnus, M., (2009), ModSecurity 2.5, Rasct

6. Ristic, I., (2012), ModSecurity Handbook, Feisty Duck

7. Dudin, E., (2017), Web server protection by ModSecurity rules, (in Bulgarian)

8. Folini, Ch., Ristic, I., Modsecurity handbook, Fiesty Dusc, 2017

9. Mod Security 2.9, https://www.modsecurity.org/, 2017

10. Httprint, http://www.net-square.com/httprint.html, 2016

11. https://www.owasp.org/, 2001-2017

12. https://malware.expert/signatures/, 2017

https://books.google.bg/books?id=5AiAVtIAKsC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.bg/books?id=5AiAVtIAKsC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://knizhen-pazar.net/index.php?search=??????%20????????%2C%20??????%20???????%2C%20??????%20?????&searchin=name
http://knizhen-pazar.net/index.php?search=??????%20????????%2C%20??????%20???????%2C%20??????%20?????&searchin=name
https://www.modsecurity.org/
http://www.net-square.com/httprint.html
https://www.owasp.org/
https://malware.expert/signatures/

