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Abstract: From the Revolution of Mathematics by Newton’s Calculus most of 

mathematicians, Scholars, researchers try to find optimization of Linear and Non Linear 

Problems (NLP). Up to 19
th

 century most of researchers developed many techniques for 

solving linear types only. After Hilbert and Banach implementationsespecially in Functional 

Analysis and Theory of Approximations, scholars focused their mission in NLP. Kuhn – 

Tucker, wolf’s identified and applied their own ideas to solve NLP. In this paper we try to 

solve NLP by Trust – Region methods, Rate Analysis of Unconstrained Methods, Linear 

Search Concepts and Direct Search Approach by Conjugate Gradient Concept with Globally 

convergence 
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INTRODUCTION AND MOTIVATION 

In this article we will discuss about is the analysis of a numerical scheme that utilized models 

to minimize determined functions. In particular, our aim comes from algorithms for 

minimization of Block – Box functions where values are computed, for example via 

simulations. For such problems, function evaluations are costly and derivatives are typically 

unavailable and cannot be approximated. Such is the setting of Derivative – Free 

Optimization (DFO) 
[8]

(Category – 1) 

Secondly, the convergence properties of several conjugate gradient methods for nonlinear 

optimization. (Category – 2): We consider only the case where the methods are implemented 

without regular restarts, and ask under what conditions they are globally convergent for 

general smooth nonlinear functions. The analysis will allow us to highlight differences 

among various conjugate gradient methods, and will suggest new implementations. In this 

case our problem is minimize a function of variables, 

min𝑓 𝑥           (2.1) 
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Where 𝑓, it is a smooth, and its gradient  𝑔 , it is available and consider the iterations of the 

form 

𝑑𝑘 =  
−𝑔𝑘 , 𝑓𝑜𝑟𝑘 = 1

−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1, 𝑓𝑜𝑟𝑘 ≥ 2
        (2.2) 

With𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑥𝑘−1        (2.3) 

Where𝛽𝑘 , it is a scalar and𝛼𝑘 , it is a step length 0btained by means of one – dimensional 

search. We call this iteration “A Conjugate Gradient Method”, if𝛽𝑘 , it is such that (2.2) and 

(2.3) reduces to the linear conjugate gradient method in the case when  𝑓, it is a strictly 

convex quadratic and𝛼𝑘 , it is the exact one – dimensional minimize. Some of the results of 

this article, however, also apply to methods of form (2.2) and (2.3) that o not reduce to the 

linear conjugate gradient method. The best known formula for𝛽𝑘 , they are called the Fletcher 

– Reeves (FR) 
[13]

, Polak – Ribiere (PR) 
[24]

 and Hestense – Stiefel (HS) 
[14, 17]

 formula are 

they given by 

𝛽𝑘
𝐹𝑅 =  𝑔𝑘 

2  𝑔𝑘−1 
2         (2.4) 

𝛽𝑘
𝑃𝑅 =  𝑔𝑘 ,𝑔𝑘 − 𝑔𝑘−1  𝑔𝑘−1 

2        (2.5) 

𝛽𝑘
𝐻𝑆 =  𝑔𝑘 ,𝑔𝑘 − 𝑔𝑘−1  𝑑𝑘−1,𝑔𝑘 − 𝑔𝑘−1        (2.6) 

Here .  , it is the scalar product used to compute the gradient and .  , denotes the associated 

norm. Note that the numerical performance of FR method is somewhat erratic, it is 

sometimes as efficient as PR and HS methods, but it is often slower. Powell (1977) 
[25] 

showed that, under some circumstance, the FR method with exact lines searches will produce 

very small displacements and will normally not recover unless a restart along the gradient 

direction is performed. This drawback will be cured by Zoutendijk (1970)
[38]

, FR method 

with exact line searches is globally convergent on the gradient functions. Al – Baali (1985)
[1]

 

extended this result to inexact line searches. In this paper we will consider various choices 

of𝛽𝑘 , and various line search strategies that result in globally convergent methods. Our 

assumptions in (2.4) it is 𝛽𝑘  ≤ 𝛽𝑘
𝐹𝑅 , it describes the modified the PR formula and in (2.5) we 

consider only non – negative values for𝛽𝑘 , and these are some sense, related to PR method. In 

particular we show that a suggestion of Powell (1985) 
[27]

, to set𝛽𝑘 = max 𝛽𝑘
𝑃𝑅 , 0 , results in 

global convergence, even for inexact line searches. Further remarks on the convergence 

results are made in (2.5), and the results of some numerical experiments are presented in 

(2.6). Finally we note that this article does not study the rate of convergence of conjugate 

gradient methods.  

 



  International Journal of Advanced Research in  ISSN: 2278-6252 

 Engineering and Applied Sciences  Impact Factor: 7.358 
 

Vol. 6 | No. 5 | May 2017 www.garph.co.uk IJAREAS | 3 
 

Trust – Region Framework – (TR):
[4]

 

TRM introduced and analyzed at each iteration one solve a TR sub problem, i.e. one 

minimizes the model within a TR ball. Note that one does know whether the model is 

accurate or not. If the TR step yields a good decrease in the objective function relatively to 

the decrease in the model and the TR radius is sufficiently small relatively to the size of the 

model gradient, then the step is taken and the TR radius is possibly increased. Otherwise the 

step is rejected and the TR radius is decreased. We show that such a method always drive the 

TR radius to zero. Based on the property we show that, provided the (First Order) accuracy of 

the model occurs with probability no smaller that
1

2
, conditioned to the prior iteration history, 

then the gradient of the objective function converges to zero with probability 1. Our proof 

techniques relies on building random process from the random events defined by the models 

being or not being accurate, and then making use of their sub martingale – like properties. We 

can extend this model of sufficient second order accuracy occur with probability no smaller 

than 0.5. We show that a subsequenceof iterates drive a measure of second order stationary to 

zero with probability 1. However, to demonstrate the limit – type convergence to a second 

order stationary point we need additional assumptions on the model. We discussed only First 

order scheme. 

Methods of Derivate – Free Optimization (DFO):
[2]

 

Consider the unconstrained optimization problem 

min𝑥∈ℝ𝑛 𝑓 𝑥  𝑤𝑒𝑟𝑒  𝑓 𝑥 , it is the first and second derivatives of the objective function 

and assumed to exist and be Lipchitz Conditions, however as it is considered in DFO , 

explicit evaluation of these derivatives is assumed to be impossible. Derivative – Free 

methods relay on sampling the objective function ateither one or more points,at eachof 

iteration and some sample to explore directions, other to build models. 

Directional Search Methods: 

Among the method of directional type to minimization without derivatives are the direct – 

search methods with were developed using a single positive spanning set or a finite number 

of them (See surveys 
[12]

 and 
[8]

, Chapter – 8). On the other hand, randomized stochastic 

methods recently became a popular alternative to direct – search methods. These methods are 

also directional, but instead of using directions from a positive spanning set, they select a 

search direction randomly. This can allow faster convergent because directions of significant 

descent may be occasionally observed, which might not be the case when insisting on using 

directions from a fixed positive spanning set (and the use of a randomly rotated positive 
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spanning set may require polling all its directions to find such a direction of significant 

descent). The random search approach introduced in 
[19]

 samples points from a Gaussian 

distribution. 

Model – based on TRM: 

Model – based DFO methods developed by Powell 
[26, 27, 28, and 29]

 and by Conn, Scheinberig, 

and Toint 
[5, 6]

 introduced a class of TRM that relied on interpolation or regression based 

quadratic approximations of the objective function instead of the usual Taylor series 

quadratic approximation. The regression – based method was later successfully used in
[3]

 

based on 
[7]

. In all cases the models are built based on sample points in reasonable proximity 

to the current best iterate. The computational study of Moor and Wild 
[23]

 has shown that 

these methods are typically significantly superior in practical performance to the other 

existing approaches due to the use of models that effectively captured the local curvature of 

the objective function. While the model quality is undoubtedly essential for the performance 

of these methods, guaranteeing sufficient quality on specific iterations is quite expensive 

computationally. Randomized models, on the other hand, can offer a suitable alternative by 

providing a good quality approximation with high probability. 

An illustration of directional and model – based methods: 

Consider the well known Rosenbrock function for our computational illustration 

𝑓 𝑥 = 100 𝑥2 − 𝑥1
2 2 +  1 − 𝑥2 

2 

The function is known to be difficult for first order or zero order methods and well suited for 

second order methods. Nevertheless some first/zero order methods performs reasonably, 

while others performs poorly. We compared the following four methods. 

1. A simple variant of direct search, the coordinate or compass search method (CS), it 

uses the positive basis 𝐼 − 𝐼 ,𝑤𝑒𝑟 𝐼, it is the identity matrix (CS) 

2. A direct –search method using positive basis 𝑄 − 𝑄  𝑤𝑒𝑟𝑒 𝑄, it is an orthogonal 

matrix obtained by randomly generating the first column (DSR) 

3. A random search (RS) with step size inversely proportional to the iterations count and 

4. A basic model – based trust – region method with quadratic model (TRQ) 

The outcome of the algorithms is summarized as follows: 

Method  No. of function Evaluation Final Function Value 

CS 11307 1.0𝑒 − 6 

DSR 5756 1.0𝑒 − 8 

RS 3724 1.0𝑒 − 8 

TRQ 62 1.0𝑒 − 14 
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That is, in particular random research are more successful at finding good directions for 

descent, while the coordinate search is slow due to the fixed choice of the search directions. It 

is also clear, from the performance of the second order trust – region method on this problem, 

that using accurate models can substantially improve efficiency. It is natural, thus, to consider 

the effects of randomization in model – based methods. In particular we consider methods 

that use models built from randomly sampled points in hopes of obtaining better models. 

First order trust – region method based on probabilistic models: 

Consider the classical trust – region method setting and notation (see 
[8]

), at iteration 𝑘, 𝑓, it is 

approximated by a model𝑚𝑘within the ball  𝐵 𝑥𝑘 , 𝛿𝑘  𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑎𝑡 𝑥𝑘  𝑎𝑛𝑑 𝑟𝑎𝑑𝑖𝑢𝑠 𝛿𝑘 . Then 

the model is minimized or approximately minimized in the ball to possibly obtain𝑥𝑘+1. In 

this article we will introduce and analyze a trust – region algorithm based on probabilistic 

models i.e. models𝑚𝑘 , they are built in a random fashion. We will discuss this models and 

state what will be assumed from them. 

The Probabilistically fully linear models: 

Consider a quadratic model written in the form𝑚𝑘 𝑥𝑘 + 𝑠 = 𝑚𝑘 𝑥𝑘 + 𝑠𝑇𝑔𝑘 +
1

2
𝑠𝑇𝐻𝑘𝑠 

Where𝑔𝑘 = ∇𝑚𝑘 𝑥𝑘   𝑎𝑛𝑑 𝐻𝑘 = ∇2𝑚𝑘 𝑥𝑘 : Our analysis is not, however, dependent on the 

models being quadratic and introduces a measure of (linear or first order) accuracy of the 

model 𝑚𝑘  

Definition 
[7, 8, 9]

: 

A function𝑚𝑘 , it is called 𝜅𝑒𝑔 , 𝜅𝑒𝑓  ,fully – linear model𝑓𝑜𝑛𝐵 𝑥𝑘 , 𝛿𝑘 𝑤𝑒𝑟𝑒 

𝜅𝑒𝑔 𝑖𝑠𝑒𝑟𝑟𝑜𝑟𝑖𝑛𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝜅𝑒𝑓 𝑖𝑠𝑒𝑟𝑟𝑜𝑟𝑖𝑛𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒, if  ∀ 𝑠 ∈ 𝐵 0, 𝛿𝑘 , and then we have 

 ∇𝑓 𝑥𝑘 + 𝑠 − ∇𝑚𝑘 𝑥𝑘 + 𝑠  ≤ 𝜅𝑒𝑔𝛿𝑘𝑎𝑛𝑑 𝑓 𝑥𝑘 + 𝑠 −𝑚 𝑥𝑘 + 𝑠  ≤ 𝜅𝑒𝑓𝛿𝑘
2 

Consider the random models 𝑀𝑘   𝑎𝑛𝑑 𝑡𝑎𝑘𝑒 𝑚𝑘 = 𝑀𝑘 𝜔𝑘  , for their realizations. The 

randomness of the models will imply the randomness of points𝑥𝑘  and the trust region radii𝛿𝑘 . 

Thus, in the sequel, these random quantities denoted by𝑋𝑘   𝑎𝑛𝑑 ∇𝑘 respectively while𝑥𝑘 =

𝑋𝑘 𝜔𝑘   𝑎𝑛𝑑 𝛿𝑘 = ∇𝑘 𝜔𝑘 , denote their realization. 

Definition 
[8]

 

A sequence of random models 𝑋𝑘 , it is 𝑝 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝜅𝑒𝑔 , 𝜅𝑒𝑓  - fully linear for a 

corresponding sequence 𝐵 𝑋𝑘 ,∇𝑘  , if the events 

𝑆𝑘 =  𝑀𝑘 𝑖𝑠𝑎 𝜅𝑒𝑔 , 𝜅𝑒𝑓  − 𝑓𝑢𝑙𝑙𝑦𝑙𝑖𝑛𝑒𝑎𝑟𝑚𝑚𝑜𝑑𝑒𝑙𝑜𝑓𝑓𝑜𝑛𝐵 𝑋𝑘 ,∇𝑘  ,satisfies the following sib 

martingale – like condition 𝑃 𝑆𝑘 |𝐹𝑘−1
𝑀  ≥ 𝑝𝑤𝑒𝑟𝑒𝐹𝑘−1

𝑀 = 𝜍 𝑀0,… ,𝑀𝑘−1 , it is 
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the𝜍 −algebra generated by 𝑀0,… ,𝑀𝑘−1 furthermore, if𝑝 ≥
1

2
, and then we say that the 

random models are probabilistically 𝜅𝑒𝑔 , 𝜅𝑒𝑓  - fully linear 

Assumption – 1: 

∀  𝑘, and for all realizations𝑚𝑘𝑜𝑓𝑀𝑘𝑎𝑛𝑑𝑋𝑘𝑜𝑓∇𝑘 , we can compute a step𝑠𝑘  such that 

𝑚𝑘 𝑥𝑘 − 𝑚𝑘 𝑥𝑘 + 𝑠𝑘 ≥
𝜅𝑓𝑐𝑑

2
 𝑔𝑘 min  

 𝑔𝑘 

 𝐻𝑘 
, 𝛿𝑘      (1.1) 

For some constant   𝜅𝑓𝑐𝑑 (Fraction of Cauchy Decrease)∈   0,1  , in this case that𝑠𝑘 , it has 

achieved a fraction of Cauchy decrease, the Cauchy step itself, which is the minimize of the 

quadratic model within the trust region along the negative model gradient  −𝑔𝑘 , trivially 

satisfies this property with𝜅𝑓𝑐𝑑 = 1 

Assumption – 2: 

There exists a constant   𝜅𝑏𝑚 > 0 (Bound on the Hessian of the Models), such that∀  𝑘, the 

Hessians𝐻𝑘of all realizations𝑚𝑘  𝑜𝑓 𝑀𝑘  satisfy 

 𝐻𝑘 ≤ 𝜅𝑓𝑐𝑑           (1.2) 

This assumption is introduced for convenience. What it is possible to show our results 

without this assumption, it is not restrictive in the case of fully linear models. In particular, 

one can construct fully linear models with arbitrarily small  𝐻𝑘 , using interpolation 

techniques. In the case of models that have large Hessian norms, because they are not fully 

linear, we can set the Hessian to some other matrix of a smaller norm. 

Algorithm – 1 and Basic Properties: 

Consider the simple trust – region algorithm, fix the positive 

parameters 𝜂1, 𝜂2 , 𝛾, 𝛿𝑚𝑎𝑥𝑤𝑖𝑡𝛾 > 1 > 𝜂1 . Select initial 𝑘 = 0, 𝛿0 ≤ 𝛿𝑚𝑎𝑥 𝑎𝑛𝑑𝑥0 . At 

iteration𝑘approximate𝑓𝑖𝑛𝐵 𝑥𝑘 , 𝛿𝑘 𝑏𝑦𝑚𝑘 , and then approximately minimize𝑚𝑘 𝑖𝑛𝐵 𝑥𝑘 , 𝛿𝑘 , 

computing𝑠𝑘  so that it satisfies a function of Cauchy decreases (3) and let 

𝜌𝑘 =
𝑓 𝑥𝑘  −𝑓 𝑥𝑘+𝑠𝑘 

𝑚 𝑥𝑘  −𝑚 𝑥𝑘+𝑠𝑘 
         (1.3) 

If𝜌𝑘 ≥ 𝜂1, then set𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘𝑎𝑛𝑑𝛿𝑘+1 =  
𝛾−1𝛿𝑘 , 𝑖𝑓 𝑔𝑘 < 𝜂2𝛿𝑘

𝑚𝑖𝑛 𝛾𝛿𝑘 ,  𝛿𝑚𝑎𝑥 , 𝑖𝑓 𝑔𝑘  ≥ 𝜂2𝛿𝑘
  

Otherwise, set𝑥𝑘+1 = 𝑥𝑘𝑎𝑛𝑑𝛿𝑘+1 = 𝛾−1𝛿𝑘 . Increasing 𝑘  𝑏𝑦 1 and repeat the iteration 

Explanation: 

This is a basic TR algorithm, with one specific modification the TR radius is always 

increased if sufficient function reduction is achieved, i.e. the step is successful, and the TR 

radius is small compared to the norm of the model gradient. The logic behind this update 

follows from the line – search (second concept) type intuition, where the step size is typically 
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proportional to the norm of the model gradient, hence the TR should be of comparable size 

also. Later we will show how the algorithm can be modified to allow for the TR radius 

remain unchanged in some iterations.Each realization of the algorithm defines a sequence of 

realizations for the corresponding random variables, in particular: 

𝑚𝑘 = 𝑀𝑘 𝜔𝑘 ,𝑥𝑘 = 𝑋𝑘 𝜔𝑘   𝑎𝑛𝑑 𝛿𝑘 = ∇𝑘 𝜔𝑘  

For the purpose of proving convergence of the algorithm to first order critical points, we 

assume that the function 𝑓 and its gradient are Lipchitz continuous in region s considered by 

the algorithm realization. To define this region we follow the process 
[8]

. Suppose that𝑥0 

(Initial iterate) is given. Then all the subsequent iteratesbelong to the level set  𝐿 𝑥0 =

 𝑥 ∈ ℝ𝑛 |𝑓 𝑥 ≤ 𝑓 𝑥0   

However, the failed iterates may lie outside this set. In the setting considered in this paper, all 

potential iterates are restricted to the region 

𝐿𝑒𝑛𝑙  𝑥0 = 𝐿 𝑥0  𝐵 𝑥, 𝛿𝑚𝑎𝑥  𝑥∈𝐿 𝑥0 =   𝑥, 𝛿𝑚𝑎𝑥  𝑥∈𝐿 𝑥0 𝑤𝑒𝑟𝑒𝛿𝑚𝑎𝑥 , it is the upper 

bound on the size of TR, as imposed by the algorithm – 1. 

Assumption – 3: 

Suppose 𝑥0  𝑎𝑛𝑑 𝛿𝑚𝑎𝑥 , they are given: Assume that 𝑓, it is continuously differentiable in an 

open set containing the set𝐿𝑒𝑛𝑙  𝑥0  and that∇ 𝑓, it is Lipchitz continuous on𝐿𝑒𝑛𝑙  𝑥0  with 

constant 𝜅𝐿𝑔(the Lipchitz constant of the gradient function) and also 𝑓, it is bounded below 

on 𝐿 𝑥0  and we need the lemma – 1 : “For every realization of our algorithm lim
𝑘⟶∞

𝛿𝑘 = 0” 

[15] and  

Lemma - 2: “If   𝑚𝑘 , it is  𝜅𝑒𝑔 , 𝜅𝑒𝑓  ,fully – linear model  𝑓 𝑜𝑛 𝐵 𝑥𝑘 , 𝛿𝑘  and 𝛿𝑘 ≤

min  
 𝑔𝑘 

𝜅𝑏𝑚
,
𝜅𝑓𝑐𝑑  1−𝜂1  𝑔𝑘 

4𝜅𝑒𝑓
 , and then at the 𝑘𝑡 iteration  𝜌𝑘 ≥ 𝜂1”

[8]
 

Convergence of the first order TR method based on probabilistic models: 

Assume that the model used in the algorithm are probabilistically fully linear, and show our 

first order convergence results, so that we state an auxiliary results from the Martingale 

literature that is 

Theorem – 1: 
[10]

 

Let𝐺𝑘 , it is a sub martingale, i.e. a sequence of random variables which,   ∀ 𝑘 , they are 

integrable  𝔼  𝐺𝑘   < ∞ 𝑎𝑛𝑑 𝔼 𝐺𝑘 |𝐹𝑘−1
𝐺  ≥ 𝐺𝑘−1𝑤𝑒𝑟𝑒𝐹𝑘−1

𝐺 = 𝜍 𝐺0,… ,𝐺𝑘−1 , it is 

the𝜍 −algebra, generated by𝐺0,… ,𝐺𝑘−1𝑎𝑛𝑑 𝔼 𝐺𝑘 |𝐹𝑘−1
𝐺  denotes the conditional expectation 

of𝐺𝑘 , given the past history of events𝐹𝑘−1
𝐺 , assume that 𝐺𝑘 − 𝐺𝑘−1 ≤ 𝑀 < ∞,∀ 𝑘 . Consider 

the random events 
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𝐶 =  lim
𝑘⟶∞

𝐺𝑘𝑒𝑥𝑖𝑠𝑡𝑠𝑎𝑛𝑑𝑓𝑖𝑛𝑡𝑒 𝑎𝑛𝑑𝐷 =  lim
𝑘⟶∞

𝐺𝑘 = ∞ 𝑡𝑒𝑛𝑃 𝐶 ∪ 𝐷 = 1 

The Limit – Type Convergence: 

In TR methods, we show first that a subsequence of iterates drive the gradient of the 

objective function to zero by theorem – 2: 

Theorem – 2:
[9, 22]

 

Suppose that the model sequence  𝑀𝑘 , it is 𝜅𝑒𝑔 , 𝜅𝑒𝑓  ,fully – linear for some positive 

constant 𝜅𝑒𝑔  𝑎𝑛𝑑 𝜅𝑒𝑓 . Let 𝑋𝑘 , it is a sequence of random iterates generated by algorithm – 1 

and then almost surely lim
𝑘⟶∞

inf ∇𝑓 𝑋𝑘  = 0 

This results achieved by following two lemmas the proofs are available in 
[9, 22]

 

Lemma – 3: 
[22]

 

Let 𝑍𝑘 𝑘∈ℕ, it is a sequence of non – negative uniformly bounded random variables and 𝐵𝑘 , 

it is a sequence of Bernoulli random variables (taking values  1 𝑎𝑛𝑑 − 1) such that 

𝑃 𝐵𝑘 = 1|𝜍 𝐵1,… ,𝐵𝑘−1 ,𝜍 𝑍1,… ,𝑍𝑘  ≥
1

2
 

Let  𝒫, it is the set of natural numbers𝑘 such that𝐵𝑘 = 1  𝑎𝑛𝑑 𝒩 = ℕ 𝒫 , note that 𝒫  𝑎𝑛𝑑 𝒩 

they are random sequences then𝑃𝑟𝑜𝑏   𝑍𝑖 < ∞𝑖∈𝒫  ∩   𝑍𝑖 = ∞𝑖∈𝒩   = 0 

Lemma – 4:
[22]

 

Let 𝑋𝑘   𝑎𝑛𝑑  ∆𝑘 , they are sequence of random iterates and random TR radii generated by 

algorithm – 1. Fix  𝜀 > 0and define the sequence 𝐾𝑖  consisting of the natural numbers 𝑘 for 

which  ∇𝑓 𝑋𝑘 > 𝜀 (note that 𝐾𝑖 , it is sequence of random variables). Then ∆𝑘<𝑘∈ 𝐾𝑖 

∞, almost surely 

Theorem for limit – type result – 3: 

Suppose that the model sequence  𝑀𝑘 , it is 𝜅𝑒𝑔 , 𝜅𝑒𝑓  ,fully – linear for some positive 

constant 𝜅𝑒𝑔  𝑎𝑛𝑑 𝜅𝑒𝑓 . Let 𝑋𝑘 , it is a sequence of random iterates generated by algorithm – 1 

and then almost surely lim
𝑘⟶∞

 ∇𝑓 𝑋𝑘  = 0 (See the proof) 
[22]

 

Modified TR Schemes: 

The TR radius update of  𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 –  𝟏 may be too restrictive as it only allow for this 

radius to be increased or decreased. In practice typically two separate thresholds are used, one 

for the increase of the TR radius and another for its decrease. In the remaining cases the TR 

radius remains unchanged. Hence, we propose an algorithm similar to Algorithm – 1, but 

slightly more appealing in practice. 

 



  International Journal of Advanced Research in  ISSN: 2278-6252 

 Engineering and Applied Sciences  Impact Factor: 7.358 
 

Vol. 6 | No. 5 | May 2017 www.garph.co.uk IJAREAS | 9 
 

Algorithm – 2: 

Fix the positive parameters𝜂1, 𝜂2 , 𝜂3 , 𝛾, 𝛿𝑚𝑎𝑥𝑤𝑖𝑡𝛾 > 1 > 𝜂1𝑎𝑛𝑑𝜂2 ≤ 𝜂3 . Select initial𝑘 =

0, 𝛿0 ≤ 𝛿𝑚𝑎𝑥 𝑎𝑛𝑑𝑥0 . At iteration𝑘approximate𝑓𝑖𝑛𝐵 𝑥𝑘 , 𝛿𝑘 𝑏𝑦𝑚𝑘 , and then approximately 

minimize𝑚𝑘 𝑖𝑛𝐵 𝑥𝑘 , 𝛿𝑘 , computing𝑠𝑘  so that it satisfies a function of Cauchy decreases (3) 

and let𝜌𝑘 it is defined as in (5). If𝜌𝑘 ≥ 𝜂1 and then set𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘𝑎𝑛𝑑 

𝛿𝑘+1 = 𝑓 𝑥 =  

𝛾−1𝛿𝑘 , 𝑖𝑓 𝑔𝑘 < 𝜂3𝛿𝑘
𝛿𝑘 , 𝑖𝑓𝜂3𝛿𝑘 ≤  𝑔𝑘 < 𝜂2𝛿𝑘

𝑚𝑖𝑛 𝛾𝛿𝑘 , 𝛿𝑚𝑎𝑥  , 𝑖𝑓𝜂2𝛿𝑘 ≤  𝑔𝑘 

  

Otherwise set𝑥𝑘+1 = 𝑥𝑘  𝑎𝑛𝑑 𝛿𝑘+1 = 𝛾−1𝛿𝑘 . Increase 𝑘 by one and repeat the iteration 

It is straightforward to adapt the proofs of lemma – 1 and theorem – 2 and 3 to show the 

convergence for this new algorithm – 2.  Additionally, one can consider two different 

thresholds  0 < 𝜂0 < 1 for decrease of the TR radius, and𝜂1 > 𝜂0for the increase of the TR 

radius. 

The convergence properties of several conjugate gradient methods for nonlinear 

optimizations: 

Background of studies or preliminaries: 

Some important Global Convergence for Conjugate Gradient Methods (GCCGM) have been 

given by Polak and Ribiere (1969) 
[24] 

method (PR), Zoutendijk (1970)
[38]

, Powell (1984) 
[26]

 

and Al – Baali |(1985) 
[1]

. In this article we will see that underlying approach used for these 

analyses is essentially the same, and we will describe it in detail, since it is also the basis for 

the result presented in this paper. 

Definition: 

Take starting point𝑥1 , and define𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘𝑎𝑛𝑑𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘  if𝑑𝑘 , it is a Descent 

Direction (DD) if 𝑔𝑘 ,𝑑𝑘 < 0, and also the angle𝜃𝑘 , it is between  −𝑔𝑘𝑎𝑛𝑑𝑑𝑘 , and then we 

have 

cos 𝜃𝑘 = − 𝑔𝑘 ,𝑑𝑘  𝑑𝑘          (2.6) 

The Fletcher – Reeves (FR), Polak – Ribiere (PR) and Hestenes – Stiefel (HS) methods have 

been discussed here. 

Assumption – 2.1 for (Category 2): 

1. The level set ℒ 𝑥 =  𝑥|𝑓 𝑥 ≤ 𝑓 𝑥1   it is bounded 

2. In some neighborhood   𝒩 𝑜𝑓 ℒ , the objective function  𝑓 , it is continuous and 

differentiable, and its gradient is Lipchitz conditions i.e. there exists a constant  𝐿 > 0 

such that 
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 𝑔 𝑥 − 𝑔 𝑥   ≤ 𝐿 𝑥 − 𝑥  ,∀ 𝑥, 𝑥 ∈ 𝒩     (2.7) 

From these assumptions, there is a constant𝛾 , such that 𝑔 𝑥  ≤ 𝛾 ,∀ 𝑥 ∈ ℒ (2.8) 

In line search, Wolf (1969) 
[36]

 consists in accepting a step length𝛼𝑘 > 0, satisfies the two 

conditions 

𝑓 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ≤ 𝑓 𝑥𝑘 + 𝜍1𝛼𝑘 𝑔𝑘 ,𝑑𝑘       (2.9) 

 𝑔 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,𝑑𝑘 ≥ 𝜍2 𝑔𝑘 ,𝑑𝑘        (2.10) 

Where  0 < 𝜍1 < 𝜍2 < 1, and we define the strategy: A step length𝛼𝑘 > 0, it is accepted if 

𝑓 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ≤ 𝑓 𝑥𝑘 + 𝛼 𝑘𝑑𝑘        (2.11) 

(𝑤𝑒𝑟𝑒 𝛼 𝑘 , it is the smallest positive stationary point of the function𝜉𝑘 𝛼 = 𝑓 𝑥𝑘 + 𝛼𝑘𝑑𝑘  

By assumption – 2.1𝛼 𝑘  , it exists and also both first local minimize as well as the global 

minimize of 𝑓, along the search direction satisfy (2.11) 

Theorem – 2.1(Zoutendijk Condition)
[38]

 

Suppose that assumption 2.1 holds and consider any iteration of the form (2.3), where𝑑𝑘 , it is 

the descent direction and𝛼𝑘  satisfies one of the following line search conditions 

1. The Wolf conditions (2.9) and (2.10) or 

2. The ideal line search condition (2.11) and then 

 𝑐𝑜𝑠2𝜃𝑘 𝑔𝑘 
2 < ∞𝑘≥1         (2.12) 

From this condition we describe the basic idea used for convergence analysis, the first result 

by PR, they assume exact line searches. The term exact line search can be ambiguous; it 

implies that one dimensional minimizer is bound that is the orthogonality condition 

 𝑔𝑘 ,𝑑𝑘−1 = 0         (2.13) 

The whole article we will indicate in detail the conditions required of the line search, suppose 

that𝑑𝑘−1 satisfies Zoutendijk’s condition and (2.13) we have 

cos 𝜃𝑘 =  𝑔𝑘  𝑑𝑘           (2.14) 

⟹ 𝑑𝑘 , it is a descent direction and we substitute (2.14) in (2.7) we get 

 
 𝑔𝑘 

4

 𝑑𝑘 
2 < ∞𝑘≥1          (2.15) 

⟹   𝑑𝑘  𝑔𝑘   , it is bounded⟹  cos 𝜃𝑘 , it is bounded away from zero then by (2.15) we 

get 

lim
𝑘⟶∞

𝑔𝑘 = 0          (2.16) 

This is done by Polak and Ribiere (1969) 
[24]

and assumes that 𝑓 , it is strongly convex, i.e. 
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 𝑔 𝑥 − 𝑔 𝑥  , 𝑥 − 𝑥  ≥ 𝑐 𝑥 − 𝑥  2 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐 > 0 𝑎𝑛𝑑 ∀ 𝑥, 𝑥 ∈ ℒ  , and for general 

functions, however it is impossible to bound  𝑑𝑘  𝑔𝑘    a priori and only a weaker result in 

(2.16) can be obtained by 

lim
𝑘⟶∞

inf 𝑔𝑘 = 0         (2.17) 

To obtain this result one proceeds by contradiction, suppose that (2.16) does not hold, the 

gradients remain bounded away from zero, there exists  𝛾 > 0 such that 

 𝑔𝑘 ≥ 𝛾,∀ 𝑘 ≥ 1         (2.18) 

⟹ 
1

 𝑑𝑘 
2

< ∞𝑘≥1          (2.19) 

Conclusion: The iteration fails only if 𝑑𝑘 ⟶ ∞ , sufficiently rapidly, i.e. (2.18) holds 

then 𝑑𝑘 
2, it can grow at most linearly i.e. 𝑑𝑘 

2 ≤ 𝑐𝑘,𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐 

This contradicts to (2.19), proving ((2.17). That is the analysis for inexact line search that 

satisfies Zoutendijk’s condition can proceed along the same line if that iteration satisfies 

cos 𝜃𝑘 ≥ 𝑐  𝑔𝑘  𝑑𝑘  𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑐      (2.20) 

Then, this relation can be used instead of (2.14) to give (2.15), and the rest of analysis is as in 

the case of exact line search. Al – Baali (1985) 
[1]

, shows that FR methods give (2.20), if the 

step length satisfies the strong Wolf condition:
[37]

 

𝑓 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ≤ 𝑓 𝑥𝑘 + 𝜍1𝛼𝑘 𝑔𝑘 ,𝑑𝑘       (2.21) 

 𝑔 𝑥𝑘 + 𝛼𝑘𝑑𝑘 ,𝑑𝑘 ≤ −𝜍2 𝑔𝑘 ,𝑑𝑘        (2.22) 

Where  0 < 𝜍1 < 𝜍2 < 1, in fact it is necessary to require that  𝜍2 <
1

2
, for the result holds for 

FR method. 

Al – Baali’s result explained (2.20) which is (2.6) and equivalent to 

 𝑔𝑘 ,𝑑𝑘 ≤ −𝑐 𝑔𝑘 
2         (2.23) 

And also FR method using the strong Wolf conditions with  𝜍2 <
1

2
always generates descent 

directions. In this article we use the approach described above to establish the global 

convergence of various algorithms with inexact line searches. We will repeatedly 

encountered (2.23), it appears to be a natural way of guaranteeing descent for conjugate 

gradient methods and we called (2.23), the sufficient condition. We also show that any 

method of the form (2.2), (2.3), they globally convergent if𝛽𝑘  satisfies 𝛽𝑘 ≤ 𝛽𝑘
𝐹𝑅  

This result suggests a new implementation of the PR method that preserves its efficiency and 

assures its convergence. We also study methods with𝛽𝑘 ≥ 0, it is in some sense, related to PR 

method. A particular case is the following adaptation of the PR method, it consists in 

restricting 𝛽𝑘 > 0 and let 
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𝛽𝑘 = max 𝛽𝑘
𝐹𝑅 , 0          (2.24) 

This motivation for this strategy arises from Powell’s analysis of the PR method, he assumes 

that the line search always finds the first stationary point, and shows that there is a twice 

continuously differentiable function and a starting point such that the sequence of gradients 

generated by the PR method stays bounded away from zero. Since Powell example requires 

that some consecutive search directions become almost contrary, and since this can only be 

achieved in the case exact line searches when 𝛽𝑘 < 0, Powell suggests modifying the PR 

method as in (2.24). 

We show that this choice of 𝛽𝑘 it does indeed result in global convergence, both for exact and 

inexact line search. Moreover we show that the analysis also applies to a family of methods 

with 𝛽𝑘 ≥ 0 that share a common property with the PR method and calledProperty (*) 

Iterations constrained by the FR method: 

We will see that it is possible to obtain global convergence if the parameter 𝛽𝑘 , bounded in 

magnitude. 

Consider the method of the form (2.2), (2.3) where 𝛽𝑘 , it is any scalar such that 

 𝛽𝑘  ≤ 𝛽𝑘
𝐹𝑅 ,∀ 𝑘 > 2         (2.25) 

And where the step length satisfies the strong Wolf conditions (2.21), (2.22) with  𝜍2 <
1

2
, in 

this case theor3m 2.1 holds and also satisfies the Wolf Conditions
[33]

(2.9) and (2.10), we need 

the following two results for our research 

Lemma – 2.1:Touati – Ahamed and Stroey (1990) 
[34]

: 

Suppose that the assumption 2.1 holds and consider any method of the form (2.2), (2.3) 

where𝛽𝑘 , satisfies (2.25), and where step length satisfies the Wolf conditions (2.21), (2.22) 

with  𝜍2 <
1

2
, and then the method generates descent directions 𝑑𝑘  satisfying 

− 𝜍2
𝑗𝑘−1

𝑗=0 ≤
 𝑔𝑘 ,𝑑𝑘  

 𝑔𝑘 
2 ≤ −2 +  𝜍2

𝑗𝑘−1
𝑗=0 ,𝑓𝑜𝑟𝑘 = 1,…,     (2.26) 

This lemma 2.1, achieves three objectives: 

1. It shows that all search directions are descent directions and the upper bound in(3.26) 

shows that the sufficient condition(2.23) holds 

2. The bounds on 𝑔𝑘 ,𝑑𝑘  impose a limit on how fast 𝑑𝑘  it can grow when the gradient 

are not small, as we will see in Theorem 2.2 

3. From (2.1) and (2.26) there exist𝑐1, 𝑐2 > 0, such that𝑐1
 𝑔𝑘 

 𝑑𝑘 
≤ cos 𝜃𝑘 ≤ 𝑐2

 𝑔𝑘 

 𝑑𝑘 
 

          (2.27) 
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Therefore, for the FR method with 𝛽𝑘  ≤ 𝛽𝑘
𝐹𝑅 , we have thatcos 𝜃𝑘 ∝

 𝑔𝑘 

 𝑑𝑘 
 

Theorem – 2.2:  

Suppose that assumption – 2.1 holds and consider any method of the form (2.2), (2.3) 

where 𝛽𝑘  ≤ 𝛽𝑘
𝐹𝑅  and where the step length satisfies the strong Wolf conditions (2.21), (2.22) 

with  0 < 𝜍1 < 𝜍2 <
1

2
, then 

lim
𝑘⟶∞

inf 𝑔𝑘 = 0  

This theorem suggests the following globally convergent modification of the PR method. It 

differs from that considered by TouatiAhamed and Storey (1990)
[34]

, in that it allows for 

negative values of𝛽𝑘 ,∀ 𝑘 ≥ 2, let𝛽𝑘 =  

−𝛽𝑘
𝐹𝑅 ,  𝑖𝑓 𝛽𝑘

𝑃𝑅 < −𝛽𝑘
𝐹𝑅

𝛽𝑘
𝑃𝑅 , 𝑖𝑓  𝛽𝑘

𝑃𝑅  ≤    𝛽𝑘
𝐹𝑅

𝛽𝑘
𝐹𝑅 , 𝑖𝑓 𝛽𝑘

𝑃𝑅 > 𝛽𝑘
𝐹𝑅

    (2.28) 

This strategy avoids one of the main disadvantages of the FR method we will discuss now. 

By numerical tests that the FR method with in exact line searches sometimes slow down 

away from the solution: The steps becomes very small and this behavior can continue for a 

very large number of iterations, unless the method is restarted. This behavior already 

observed by Powell (1977) 
[25]

, who provides an explanation under the assumption of exact 

line searches. If we extend the argument in the case of inexact line searches, due to (2.26), i.e. 

suppose that at the iteration 𝑘, an unfortunate search direction is generated, such thatcos𝜃𝑘 ≈

0, and that𝑥𝑘+1 ≈ 𝑥𝑘 ⟹  𝑔𝑘+1 ≈  𝑔𝑘   𝑎𝑛𝑑 𝛽𝑘+1
𝐹𝑅 ≈ 1    (2.29) 

⟹  𝑔𝑘+1 ≈  𝑔𝑘 ≤  𝑑𝑘 , by (2.27) and also by (2.29) and (2.2) we get 

 𝑑𝑘+1 ≈  𝑑𝑘 ≥  𝑔𝑘+1 ⟹ cos 𝜃𝑘+1 ≈ 0 

The argument can therefore start all over again we will give a numerical example later. The 

PR method would behave quite differently from the FR method in this situation. If𝑔𝑘+1 ≈

𝑔𝑘  𝑡𝑒𝑛 𝛽𝑘+1
𝑃𝑅 ≈ 0, by (2.2) and (2.27) we havecos 𝜃𝑘+1 ≥ cos 𝜃𝑘 ⟹The PR method would 

recover from that situation. Consider the behavior of method (2.28), in this circumstances we 

have𝛽𝑘+1
𝐹𝑅 ≈ 1  𝑎𝑛𝑑 𝛽𝑘+1

𝑃𝑅 ≈ 0 , in this case (3.7) will set𝛽𝑘+1 = 𝛽𝑘+1
𝑃𝑅  as desired and it is 

reassuring that the modification (2.28) which falls back on the FR method to ensure global 

convergence avoids the inefficient of this method. 

Before we discussed a property of the PR method that is not shared by the FR method, when 

the step is small,𝛽𝑘
𝑃𝑅  it will be small. This property is essential for the analysis of our further 

research, where a method that possess it, will be said to have Property (*). If the bound 𝛽𝑘  ≤

𝛽𝑘
𝑃𝑅 , it can be replaced by 𝛽𝑘  ≤ 𝑐𝛽𝑘

𝑃𝑅 ,𝑤𝑒𝑟𝑒 𝑐 > 1, (it is some suitable constant)        (2.30) 
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We have not be able to establish global convergence in this case (although, by modifying 

Lemma 2.1, we can show that the descent property of the search directions can still be 

obtained provided𝜍2 < 1 2𝑐 , we can also see the negative results that is 

“Consider the method (2.1) to (2.3) with a line search that always choose the first positive 

stationary point of𝜉𝑘 𝛼 = 𝑓 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , there exists a twice continuously differentiable 

objective function of three variables, a stationary point and a choice of 𝛽𝑘  satisfies 𝛽𝑘 ≤

𝑐𝛽𝑘
𝑃𝑅 ,𝑤𝑒𝑟𝑒 𝑐 > 1, such that the sequence of gradient  𝑔𝑘  , it is bounded away from zero” 

Powell (1984), (1985)
[26, 27]

 

Methods related to the PR method with𝜷𝒌 ≥ 𝟎 ,∀ 𝒌: 

Since PR method cycles without obtaining the solution from Powell examples and also 

keeping 𝛽𝑘 ≥ 0, it is that it allows us to easily enforce the descent property of the algorithm 

we will discuss here: 

Consider the iteration (2.1) to (2.3) with any𝛽𝑘 ≥ 0, we need sufficient condition 

 𝑔𝑘 ,𝑑𝑘 ≤ −𝜍3 𝑔𝑘 
2𝑓𝑜𝑟𝑠𝑜𝑚𝑒 0 < 𝜍3 ≤ 1 and ,∀ 𝑘    (2.31)  

⟹  𝑔𝑘 ,𝑑𝑘 =  𝑔𝑘 
2 + 𝛽𝑘 𝑔𝑘 ,𝑑𝑘−1        (2.31a) 

For the results that follow, we do not specify a particular line search strategy. We assume that 

the line search satisfies the following three properties 

All iterates remain in the level set ℒ defined in assumption 2.1:  𝑥𝑘 ⊂ ℒ  (2.32) 

The Zoutendijk condition holds and the sufficient descent condition (2.31) holds 

We already mentioned that the Wolf line search, as well as the ideal line search ensure 

Zoutendijk condition and reduce  𝑓 at each step ⟹  𝑥𝑘 ⊂ ℒ, and also an exact line search 

satisfies the sufficient condition (2.31), because 𝑔𝑘 ,𝑑𝑘 ≤ − 𝑔𝑘 
2, i.e. an inexact line search 

procedure that satisfies the Wolf conditions and (2.31) when𝛽𝑘 ≥ 0 ⟹ The results apply to 

both ideal and practical line searches in this situation, for the rest of situation assume that 

convergence does not occur in a finite number of steps, that is𝑔𝑘 ≠ 0, ,∀ 𝑘 . Further we need 

some lemmas and theorem for our remaining researches without proof: 

Lemma – 2.2: 

Suppose that the assumption 2.1 holds. Consider the method (2.1) to (2.3), with𝛽𝑘 ≥ 0, and 

with any line search satisfying both Zoutendijk condition and sufficient condition (2.31). 

If  𝑔𝑘 ≥ 𝛾,𝑤𝑖𝑡 𝛾 > 0,∀ 𝑘  , and then𝑑𝑘 ≠ 0  𝑎𝑛𝑑 𝑎𝑙𝑠𝑜   𝑢𝑘 − 𝑢𝑘−1 
2

𝑘≥2  𝑤𝑒𝑟𝑒 𝑢𝑘 =

𝑑𝑘  𝑑𝑘   

This lemma – 2.2 not applicable to the convergence of the sequence 𝑢𝑘  but shows that the 

search direction𝑢𝑘 , changes slowly and also asymptotically, it applies to any choice of𝛽𝑘 ≥
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0, in addition that𝛽𝑘  it is small when the step is small: That is PR method possess this 

property and that it prevents the inefficient behavior of the FR method from occurring, that 

property is essential for our research. 

Property (*): 

Consider the method of the form (2.1) to (2.3), and suppose that 

0 < 𝛾 ≤  𝑔𝑘 ≤ 𝛾   ∀ 𝑘 ≥ 1        (2.33) 

Then this method has property (*) if there exist constants 𝑏 > 1  𝑎𝑛𝑑 𝜆 > 0  𝑠𝑢𝑐 𝑡𝑎𝑡 ∀ 𝑘 

and then 

 𝛽𝑘  ≤ 𝑏          (2.34) 

And 𝑠𝑘−1 ≤ 𝜆 ⟹  𝛽𝑘 ≤
1

2𝑏
       (2.35) 

We can easily verify that under assumption – 2.1, PR and HS methods have property (*) 

For the PR method, using constants 𝛾𝑎𝑛𝑑𝛾 , in (2.33) choose 𝑏 = 2𝛾 2 𝛾2 𝑎𝑛𝑑𝜆 =

𝛾2  2𝐿𝛾 𝑏  , and then we have from (2.5) and (2.33) 𝛽𝑘
𝑃𝑅 ≤

  𝑔𝑘 + 𝑔𝑘−1   𝑔𝑘 

 𝑔𝑘−1 
2 ≤ 2𝛾 2 𝛾2 = 𝑏  

And when 𝑠𝑘−1 ≤ 𝜆, we have from (2.2) 𝛽𝑘
𝑃𝑅  ≤

 𝑦𝑘−1  𝑔𝑘 

 𝑔𝑘−1 
2 ≤ 𝐿𝜆𝛾 𝛾2 = 1 2𝑏   

For the HS method, assume that (2.31) and the Wolf second condition are satisfied, and then 

 𝑑𝑘−1,𝑦𝑘−1 =  𝑑𝑘−1,𝑔𝑘 −  𝑑𝑘−1,𝑔𝑘−1 ≥ − 1 − 𝜍2  𝑔𝑘−1,𝑑𝑘−1 ≥  1 − 𝜍2 𝜍3 𝑔𝑘−1 
2 

⟹  𝑑𝑘−1,𝑦𝑘−1 ≤  1 − 𝜍2 𝜍3𝛾
2 

Again using 𝑑𝑘−1,𝑦𝑘−1 ≤  1 − 𝜍2 𝜍3𝛾
2, in (2.6), we get 𝛽𝑘

𝐻𝑆 ≤
2𝛾 2

 1−𝜍2 𝜍3𝛾2 = 𝑏 

Define:𝜆 =  1 − 𝜍2 𝜍3𝛾
2  2𝐿𝛾 𝑏   and using 𝑔 𝑥 − 𝑔 𝑥   ≤ 𝐿 𝑥 − 𝑥   and if 𝑠𝑘−1 ≤ 𝜆, 

and then 

 𝛽𝑘
𝐻𝑆 ≤

𝐿𝜆𝛾 

 1 − 𝜍2 𝜍3𝛾2
= 1 2𝑏  

We can understand that many other choices of𝛽𝑘  give rise to algorithms with Property (*), for 

example: 

If 𝛽𝑘 , it has Property (*), so do 𝛽𝑘   𝑎𝑛𝑑 𝛽𝑘
+ = max  𝛽𝑘  , 0 , again the following lemma – 3 

shows that if the gradients are bounded away from zero, and if the method has the Property 

(*), then a fraction of the steps cannot be too small, first we let ℕ+(The set of all positive 

natural numbers) and for  𝜆 > 0 , define𝒦𝜆 =  𝑖 ∈ ℕ+|𝑖 ≥ 2,  𝑠𝑖−1 > 𝜆 , i.e. the set of 

integers to steps that are larger than 𝜆, and we need to consider groups of  ∆ consecutive 

iterates, and for this purpose we define 

𝒦𝑘 ,∆
𝜆 =  𝑖 ∈ ℕ+|𝑖 < 𝑘 + ∆ − 1,  𝑠𝑖−1 > 𝜆 Let 𝒦𝑘 ,∆

𝜆   denotes the number of elements of𝒦𝑘 ,∆
𝜆  
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And let .    𝑎𝑛𝑑  .   denote the floor and ceiling respectively 

Lemma – 2.3: (without proof) 

Suppose that assumption – 2.1 hold and consider the method (2.1) to (2.3) with any line 

search satisfying 𝑥𝑘 ⊂ ℒ, and assume that the method has Property (*). Suppose that (2.33) 

holds, and then there exists 𝜆 > 0 such that for any ∆∈ ℕ+, and any index𝑘0, there exists a 

greater index  𝑘 ≥ 𝑘0 such that 𝒦𝑘 ,∆
𝜆  >

∆

2
 

Theorem – 2.3: (without proof) 

Suppose that assumption – 2.1 hold and consider the method (2.1) to (2.3) with the following 

properties 

𝛽𝑘 ≥ 0,∀ 𝑘 

The line search satisfies  𝑥𝑘 ⊂ ℒ , the Zoutendijk conditions and the sufficient descent 

conditions with 

Property (*) holds  

Then lim
𝑘⟶∞

inf 𝑔𝑘 = 0 

Corollary for theorem 2.3 (without proof): 

Suppose that assumption – 2.1 hold and consider the method (2.1) to (2.3) with𝛽𝑘 =

 max 𝛽𝑘
𝑃𝑅 , 0 , and the line search satisfying wolf conditions and the sufficient descent 

conditions and then lim
𝑘⟶∞

inf 𝑔𝑘 = 0 

Discussion about our Research: for both Categories: 

In Category – 1: 

We discussed algorithmic framework that is based on models whose approximation quality is 

random and sufficiently good with probability>
1

2
, we call such models probabilistically fully 

linear or fully quadratic depending on the quality of approximation that they provide. Here 

we discuss how such models can be generated (for some large enough values of 

the 𝜅 constants) and outline future research in this direction. 

Fully Linear and Fully Quadratic Polynomial Interpolation Models and Λ– Poised Sample set: 

Let𝒫𝑛
𝑑 denotes the set of polynomials of degree  ≤ 𝑑𝑖𝑛ℝ𝑛𝑎𝑛𝑑𝑙𝑒𝑡𝑞1 = 𝑞 + 1 denotes the 

dimension of this space. That is the dimension of 𝒫𝑛
1𝑖𝑠𝑞1 = 𝑛 + 1; 𝑓𝑜𝑟𝒫𝑛

2𝑖𝑠𝑞1 =

1

2
 𝑛 + 1  𝑛 + 2 .  

A basisΦ =  𝜙0 𝑥 ,𝜙1 𝑥 ,… ,𝜙q 𝑥   𝑓𝑜𝑟 𝒫𝑛
𝑑 , it is set of polynomials of degree ≤ 𝑑 that 

span 𝒫𝑛
𝑑 . For any such basis Φ, any polynomial 𝑚 𝑥 ∈ 𝒫𝑛

𝑑 , it can be written as 
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𝑚 𝑥 =  𝛼𝑗𝜙𝑗  𝑥 
𝑞
𝑗=0 𝑤𝑒𝑟𝑒𝛼𝑗 ’s are real coefficients    (1.4)  

Given a set of 𝑝1 = 𝑝 + 1 𝑝𝑜𝑖𝑛𝑡𝑠 𝑌 =  𝑦0,… ,𝑦𝑝 ⊂ ℝ𝑛 ,𝑚 𝑥 , it is said to be the 

interpolation polynomial of  𝑓 𝑥  𝑜𝑛 𝑌, if it satisfies 

𝑀 Φ,𝑌 𝛼 = 𝑓 𝑌          (1.5) 

Where𝑀 Φ,𝑌 =

 
 
 
 
 𝜙0 𝑦

0 

𝜙0 𝑦
1 

⋮
𝜙0 𝑦

𝑝 

𝜙1 𝑦
0 

𝜙1 𝑦
1 

⋮
𝜙1 𝑦

𝑝 

⋯
⋯
⋮
⋯

𝜙𝑞 𝑦
0 

𝜙𝑞 𝑦
1 

⋮
𝜙𝑞 𝑦

𝑝  
 
 
 
 

    (1.6) 

And  𝑓 𝑌 , it is the𝑝1 dimensional vector whose entries are  𝑓 𝑦𝑖  𝑓𝑜𝑟 𝑖 = 0,… , 𝑝 . The 

interpolation polynomial 𝑚 𝑥 exists and it is unique if  𝑝 = 𝑞, and the set 𝑌 , it is poised 
[30]

, 

which essentially means that 𝑀 Φ,𝑌 , it is nonsingular. When the number of points𝑝1, it is 

smaller than the number of elements in Φ, the matrix 𝑀 Φ,𝑌 , it has more columns than 

rows and the system (1.5) is underdetermined. In this case, there are several choices of 

interpolation. If on the other hand, 𝑝 > 𝑞 and then the system (1.5), is over determined and 

we can apply least square regression instead of interpolation. Other polynomial 

approximations are also possible. If 𝑌, it is such that the condition number of 𝑀 Φ,𝑌 , it is 

bounded byΛ , where𝑌 =   𝑦0 − 𝑥𝑘 ∆ ,… . ,  𝑦𝑝 − 𝑥𝑘 ∆  , it is a scalar vector of  𝑌  and 

then  𝑌 , it is Λ  – poised 
[8]

 and also𝑝1 > 𝑛 + 1 , and then we can build a model which 

is  𝜅𝑒𝑓 ,𝜅𝑒𝑔 − fully linear, with 𝜅𝑒𝑓 ,𝜅𝑒𝑔 = 𝒪 𝑝Λ  analogously it is shown that if 𝑝1 >

 𝑛 + 1  𝑛 + 2 2 , then we can also build a  𝜅𝑒𝑓 , 𝜅𝑒𝑔 − fully quadratic model, 

with 𝜅𝑒𝑓 ,𝜅𝑒𝑔 = 𝒪 𝑝Λ  in  𝑛  dimensions so we require  𝑛 + 1  𝑛 + 2 2  sample points 

(within reasonable proximity of the current iterate𝑥𝑘), estimating the condition number of the 

matrix  𝑀 Φ,𝑌 , it may require  𝒪 𝑛6  arithmetic operations. This dependency on the 

dimension limits the use of fully quadratic models to small dimensional problems. 

We have two main ways to improve the pre – iteration complexity of DFO algorithms. 

One approach is, only change the sample set by one point at a time, has been very successful 

in practice, as it not only reduce the number of function evaluations, but also the linear 

algebra involved 
[35]

, However in 
[32]

 is was shown that such algorithms still require 

computing a Λ  – poised set in the criticality step of the TR framework. Hence the 

computations of up to 𝑛 sample points is required if fully linear models are used, while for 

fully quadratic models up to 𝑛 + 1  𝑛 + 2 2 − 1 new sample points have to be evaluated. 

The other, complementary, approach is to use quadratic models based on fewer 

than 𝑛 + 1  𝑛 + 2 2  sample points, which also reduces both the cost of the linear algebra 
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and the number of functions evaluations. In practical DFO applications, incomplete quadratic 

models have been used very successfully 

Let 𝑌 =  𝑦0,… ,𝑦𝑝 , it is a set of sample points 

with𝑝 < 𝑞 ,Φ =  1, 𝑥1,… , 𝑥𝑛 ,
𝑥1

2

2
, 𝑥1𝑥2,… , 𝑥𝑛−1𝑥𝑛

𝑥𝑛
2

2
  

The interpolating polynomial for    𝑓 𝑜𝑛 𝑌  is given by (1.4), where   𝛼  satisfies the 

undetermined interpolation system (1.6). Since the system admits multiple solutions we have 

some freedom in selecting  𝛼 , in 
[35]

, the Minimum Frobenius Norm (MFN) models are 

considered, i.e. the models for which the Frobenius norm of the hessian, or  𝛼𝑄 2 =

  𝛼𝑛+1,𝛼𝑛+2,… ,𝛼𝑞  2
, it is minimized subject to (18). In 

[30]
 Powell selects the model based 

on MFN of the update of the Hessian. Both these methods are successful in practice, and 

provide useful second order information. However, so far theoretically they are not shown to 

be superior to simple linear models. Indeed as we will show example below the MFN models 

may be nearly as bad as simple linear models, but the use of random sample sets can provide 

a significant practical improvement in this case(see the Table – 1) 

Random Samplesets: 

In the cases when function evaluations are not very expensive or can be obtained in parallel, 

there is less incentive to reuse old sample points for the model building, because ensuring the 

model quality can become the bottleneck of the computations. Instead, we can simply use 

well – poised deterministic sample set, chosen in advance. However, it is not always the best 

approach because the pattern is chosen without any consideration for the shape of the 

function and may be very poor fit. Random sample sets can automatically provide good 

quality models with high enough probability, yet they do not suffer from the worst case 

behavior of the deterministic sample sets. (See the Table –1.1) 

Table -1.1: The illustration of the oscillating behavior of a TR method based on 

deterministic underdetermined sample set 

Iterations:# Success 𝒇𝒗𝒂𝒍𝒖𝒆 ∆ 𝝆 

1687 0 +𝟑.𝟔𝟕𝟒𝟐𝟎𝟕𝟏𝟏𝒆 − 𝟎𝟐 +𝟑.𝟏𝟐𝒆 − 𝟎𝟐 −𝟏.𝟔𝟔𝒆 + 𝟎𝟎 

1688 1 +𝟑.𝟔𝟕𝟒𝟏𝟖𝟕𝟕𝟖𝒆 − 𝟎𝟒 +𝟔.𝟐𝟓𝒆 − 𝟎𝟐 +𝟖.𝟏𝟑𝒆 + 𝟎𝟐 

1689 0 +𝟑.𝟔𝟕𝟒𝟏𝟖𝟕𝟕𝟖𝒆 − 𝟎𝟒 +𝟑.𝟏𝟐𝒆 − 𝟎𝟐 −𝟏.𝟔𝟔𝒆 + 𝟎𝟎 

1690 1 +𝟑.𝟔𝟕𝟒𝟎𝟗𝟔𝟗𝟑𝒆 − 𝟎𝟒 +𝟔.𝟐𝟓𝒆 − 𝟎𝟐 +𝟑.𝟗𝟐𝒆 + 𝟎𝟑 

1691 0 +𝟑.𝟔𝟕𝟒𝟎𝟗𝟔𝟗𝟑𝒆 − 𝟎𝟒 +𝟑.𝟏𝟐𝒆 − 𝟎𝟐 −𝟏.𝟔𝟔𝒆 + 𝟎𝟎 

1692 1 +𝟑.𝟔𝟕𝟒𝟎𝟕𝟖𝟏𝟐𝒆 − 𝟎𝟒 +𝟔.𝟐𝟓𝒆 − 𝟎𝟐 +𝟖.𝟑𝟒𝒆 + 𝟎𝟐 

1693 0 +𝟑.𝟔𝟕𝟒𝟎𝟕𝟖𝟏𝟐𝒆 − 𝟎𝟒 +𝟑.𝟏𝟐𝒆 − 𝟎𝟐 −𝟏.𝟔𝟔𝒆 + 𝟎𝟎 

1694 1 +𝟑.𝟔𝟕𝟑𝟗𝟖𝟗𝟓𝟗𝒆 − 𝟎𝟒 +𝟔.𝟐𝟓𝒆 − 𝟎𝟐 +𝟒.𝟏𝟑𝒆 + 𝟎𝟑 

1695 0 +𝟑.𝟔𝟕𝟑𝟗𝟖𝟗𝟓𝟗𝒆 − 𝟎𝟒 +𝟑.𝟏𝟐𝒆 − 𝟎𝟐 −𝟏.𝟔𝟔𝒆 + 𝟎𝟎 
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Example of comparison of using undetermined quadratic models based on the random 

and deterministic sample sets: 

Let  𝑓 𝑥 = 10 𝑥2 − 𝑥1 
2 +  1 − 𝑥2 

2 , it is a version of Rosenbrock function but with 

smaller curvature and Hessian condition number. Apply the TR method [3] to this function 

with model based on 5 points at each iteration and construct MFN models based on the 

sample sets. Note that fully quadratic models require 6 points. Choose deterministic models 

with the sample set selected as the current iterate plus the coordinate steps of 

length  𝛿, 𝑖. 𝑒.  𝑌 =  𝑦0,𝑦0 ± 𝛿𝑒1,𝑦0 ± 𝛿𝑒2 −a very well poised setin other words the set 𝑌it 

is generated around the current iterate𝑦0, by adding coordinate steps of size 𝛿 

For the second method we generate the set  𝑌 by picking 4 random points in a ball of radius 𝛿 

around the current iterate. The results are as follows: “The method based on deterministic 

sample sets achieved the final function value of10−4 in 8500 function evaluations, while the 

method based, while the method based on random sample set achieved (on average over ten 

runs) the function value of10−6 in 2500 function evaluations (with largest deviation of under 

200 function evaluations and less that one order of magnitude in accuracy)” Clearly, using 

random sample sets enhances the performance of the MFN models here. In particular, 

observe the slow progress of the deterministic method in Table – 2 which represents iteration 

output. From the Table – 2, the iterations follow a pattern (it starts at around iteration 1000) 

where𝛿𝑘  increased and decreased according to alternating successful and unsuccessful steps, 

while the progress is slow overall. We repeated experiments 10 times with the fixed pattern 

which a randomly rotated equivalent of  𝑌 defined above. The cyclic behavior and significant 

slowdown did not occur for every pattern, but for about half of the patterns. The variance in 

the number of function values was in the order of thousands and the final accuracy varied 

from 3 to 8 digits, a very non – robust behavior. The purpose of this example is to illustrate 

the effect of random sample sets. Note that if instead of fixed well – poised deterministic 

sample sets, use sample sets which included some recent old sample points, then the behavior 

of MFN method would have matched that of the method based on random sample sets. This 

is due that fact that the sets of (recent) old sample points have essentially random behavior 

(Although theoretically this cannot be proved still now) 

Analysis of Poisedness of Random Sample Sets: 

Let a sample set 𝑌 =  0,𝑦0,… ,𝑦𝑝 ⊂ ℝ𝑛  , with a fixed point at the origin and the remaining 

points being generated randomly from a Standard Gaussian Distribution (With zero mean and 

covariant matrix equal to the identity matrix, with the case of a scaled identity matrix being a 
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simple extension of what we present below) and letΦ 𝑥 =  1, 𝑥1, 𝑥2,… , 𝑥𝑛 ⟹ 𝑀 Φ,𝑌 , it 

is a matrix whose first column is all 1’s, the first row is zero except the first element and the 

remaining 𝑝 × 𝑛, it is a Gaussian matrix. Under the simple transformation, the condition 

number of  𝑀 Φ,𝑌 =the condition number of Random Gaussian  𝑝 × 𝑛  matrix, from the 

results random matrix theory 
[11, 12]

, we got the bound 

𝑃 𝑐𝑜𝑛𝑑 𝑀 Φ,𝑌 > 𝛬  ≤ 𝐶 𝑛,𝑝 
1

Λ  𝑛−𝑝 +1 𝑤𝑒𝑟𝑒𝐶 𝑛,𝑝 , it is constant dependent on𝑝𝑎𝑛𝑑𝑛 

In particular for 𝑝 = 𝑛, the result in 
[11] ⟹  𝑃 𝑐𝑜𝑛𝑑 𝑀 Φ,𝑌 > Λ  ≤

1

 2𝜋
 
𝐶𝑛

Λ
  𝑤𝑒𝑟𝑒 𝐶 <

6.5, it is the universal constant. From this result we get for given 𝑝 𝑎𝑛𝑑 𝑛 there exists Λ large 

enough such that 

𝑃 𝑐𝑜𝑛𝑑 𝑀 Φ,𝑌 > Λ  ≥
1

2
 . Hence there exists𝜅𝑒𝑓 , 𝜅𝑒𝑔  such that the linear interpolation (or 

regression) polynomials based on Gaussian sample sets are probabilistically 𝜅𝑒𝑓 ,𝜅𝑒𝑔 −fully 

linear. 

Sparse Models based on Random Sample Sets: 

For recovery of a sparse fully linear model, if such model exists, in this case the sample set 𝑌, 

it can be generated by a Gaussian distribution around the current iterate and the random 

matrix 𝑀 Φ,𝑌 , it can be viewed as a Gaussian matrix just as it described above. Sparse 

signal recovery can be applied in this well known case to show that if the number of nonzero 

in the gradient is  𝑠 , and the number of sample points is  𝑝 ≥ 𝐶𝑠 log 𝑛 𝑠  , and then the 

sparse fully linear model can be recovered with probability greater than 

1 − 𝑐1𝑒
−𝑐2𝑝𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠𝑐1, 𝑐2𝑎𝑛𝑑𝐶 

In fact the constant s also depends on the error between the function values 𝑓 𝑦𝑖 , and the 

sparse values 𝑚 𝑦𝑖 , but we omit these details here for simplicity. 

Non – uniform Recovery and Martingale Property: 

In the example we consider the sample sets are generated to provide high quality of the 

models independently of the past history of the algorithm. However, our theory allows the 

probability of a good model to be dependent on the past. In some cases taking this into 

account may provide a more efficient approach to building models. Here we discuss one 

possible example. The results of recovery of sparse models which we considered from 

compressed sensing imply called, uniform recovery, where the matrix 𝑀 Φ,𝑌 , it is designed 

in such a way that any sparse model can be recovered. However, in our case, it is sufficient to 

recover the specific model that happens to approximate the objective function 𝑓  sufficiently 

well in TR. Thus, the non – uniform recovery results can apply. Some of these results, 
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including the ones for the Gaussian matrices, can be found in 
[30a]

. The key is that if only one 

fixed signal needs to be recovered with high probability, and then it is sufficient to generate 

the random matrix 𝑀 Φ,𝑌 , using fewer samples that what is necessary for the uniform 

recovery the probability of generating fully linear can be sufficient high, conditioned  on the 

model itself, this fact, in our setting, means that the probability of a “good” model is high, 

conditioned on the current iterate and TR radius, in other words, on the past behavior of the 

algorithm. In short, we observe that such a setting will satisfy the sub martingale property, 

but not complete independence on the past. 

Examples of Comparing Performance of Sparse Model recovery vs. Other 

Underdetermined Second Order Models: Consider the function 𝑓 𝑥 = 10 𝑥2 − 𝑥1 
2 +

 1 − 𝑥2 
2 𝑤𝑖𝑡 𝑥 ∈ ℝ10 , it means that we have 10 – dimensional problem, but only the first 

two dimensions are important. Note that to build a fully linear model without applying sparse 

recovery we need to sample 11 points, to build a fully quadratic model we need 66 sample 

points. We apply three variants of the TR algorithm discussed in this paper to this problem 

which only differ by the choice of the model.  

Case – I: 

The models are built based on a fixed number𝑛𝑌of random points that are distributed in a 

small hypercube around the current iterate, called this method RSTR 

Case – II: 

We built a sparse models based on “Greedy” sample sets of up to a given number points 𝑛𝑌, 

which only use points generated in the course of the TR steps, otherwise, resulting old points, 

and called it GSTR 

Case – III: 

This algorithm uses the same greedy sample sets, but construct MFN models, rather than 

sparse models, Call it MFN 

We repeated experiments for each method for𝑛𝑌ranging from 16 to 40, for RSTR and report 

results average over 5 runs, since the outcome is random the resulting numbers of function 

evaluations and iterations are illustrate in Table – 1.2. In the table – 1.2, the number of 

functions evaluations taken by GSTR and MFN are roughly same as the number of iterations, 

because only one function value is computed per iteration, except for the first iteration. From 

the number of iterations required by each algorithm it is evident that RSTR clearly recovers 

the fully quadratic models of  𝑓 , with as few as 20 sample points, while the other two 

methods do not. While the first algorithm performs more function evaluations, they can be 
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obtained in parallel, and the achieved accuracy is by far better than that of the other methods. 

Note that while the outcome of RSTR is random, we observed very little variance in the 

number of iterations, and hence, function evaluations, in our experiments. It is also iterating 

to observe that the number of iterations of RSTR does not get smaller after the size of 

the 𝑛𝑌exceeds 20, hence, it appears that while larger number of sample points per iteration 

may allow for more reliable recovery, it is not necessary for fast convergence. Computational 

traded – offs in optimization using sparse models is a subject of a separate study. 

Table – 1.2: The comparison of the number of iterations and function evaluation for 

RSTR, averaged over 5 runs, 

(Accuracy for𝒏𝒀 ≥ 𝟐𝟎 𝒊𝒔 𝟏.𝟎𝒆 − 𝟏𝟏), GSTR (accuracy𝟏.𝟎𝒆 − 𝟏𝟏) and MFN 

(accuracy𝟏.𝟎𝒆 − 𝟓) methods 

𝒏𝒀 # Of iter. RSTR # Of iter. GSTR # Of iter. MFN # Of iter. Eval. RSTR 

16 189 318 767 3027 

17 99 247 1048 1693 

18 38 158 925 680 

19 30 157 646 585 

20 27 137 1086 536 

21 20 144 919 424 

22 21 145 778 462 

23 24 149 848 547 

24 19 150 962 515 

25 20 152 636 504 

26 19 144 414 513 

27 19 125 456 509 

28 18 166 401 568 

29 20 137 659 570 

30 19 122 503 607 

31 20 154 349 627 

32 20 157 390 646 

33 20 164 484 528 

34 18 175 442 605 

35 18 164 362 637 

36 20 139 301 727 

37 20 162 328 754 

38 20 136 439 652 

39 18 183 316 702 

40 19 152 536 760 

   

Discussion about our Research:In Category – 2: 

We saw that global convergence is obtained for any 𝛽𝑘 , in the interval𝐼1 =  −𝛽𝑘
𝑃𝑅 ,𝛽𝑘

𝐹𝑅 , and 

we proved global convergence for any 𝛽𝑘 , with Property (*) contained in the interval𝐼2 =

 0,∞ . Whether these results can be combined to obtain larger intervals of admissible 𝛽𝑘 : In 
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particular, since PR method has property (*), whether global convergence is obtained by 

restricting𝛽𝑘
𝑃𝑅 , to the larger interval𝐼1 ∪ 𝐼2, i.e. by letting 𝛽𝑘 =  

𝛽𝑘
𝑃𝑅 , 𝑖𝑓 𝛽𝑘

𝑃𝑅 ≥ 𝛽𝑘
𝐹𝑅

−𝛽𝑘
𝑃𝑅 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

It is enough, global convergence cannot be guaranteed, and it was shown by Powell (1984) 

and the sequence 𝛽𝑘
𝑃𝑅 ,𝛽𝑘

𝐹𝑅 , it has exactly three accumulation points −
1

3
, 1 𝑎𝑛𝑑 10 

⟹ ∃ , an integer𝑘0 such that  𝛽𝑘 = 𝛽𝑘
𝑃𝑅 ≥ 𝛽𝑘

𝐹𝑅 ,∀ 𝑘 ≥ 𝑘0 , and now, the function can be 

modified and the starting point can be changed so that PR method generates from the new 

initial point𝑥 1 , a sequence 𝑥 𝑘  𝑤𝑖𝑡 𝑥 𝑘 = 𝑥𝑘+𝑘0−2
 𝑓𝑜𝑟 𝑘 ≥ 2 . In this modified case, we 

have𝛽 𝑘
𝑃𝑅 ≥ −𝛽 𝑘

𝐹𝑅 ,∀ 𝑘 ≥ 2, but the sequence of gradient is bounded away from zero.We 

check another case in which interval of admissible 𝛽𝑘 , it cannot be combined. Any method of 

the form (2.2) to (2.3) with a line search giving  𝑔𝑘 ,𝑑𝑘−1 = 0,∀ 𝑘,𝑎𝑛𝑑 𝑤𝑖𝑡 𝛽𝑘 ∈ 𝐼3 =

 −1, 1 , it is globally convergent. This is easy to see, since in this case 𝑑𝑘 
2 ≤  𝑔𝑘 

2 +

 𝑑𝑘−1 
2 ≤ ⋯ ≤ 𝛾 2𝑘,𝑤𝑒𝑟𝑒 𝛾 , it is an upper bound on 

 𝑔 𝑥  ⟹  𝑑𝑘 
2 , grows at most linearly, and globally convergence (explained in 

preliminaries). Otherwise, by corollary of  𝑡𝑒𝑜. 2.3  shows that the PR method is 

convergent if restricted to𝐼1 =   0,∞  . 

However the PR method may not converge if𝛽𝑘
𝑃𝑅 , it is restricted to𝐼3 ∪ 𝐼2 =   −1,∞  . This 

argument again based on the fact that𝛽𝑘
𝑃𝑅 ≥ −

1

4
,∀ 𝑘 (It is proved by means of Cauchy – 

Schwartz inequality).  

⟹, in the case of𝛽𝑘
𝑃𝑅 ∈   −1,∞  , but convergence is not obtained. Therefore we are not able 

to generalize in FR method, PR method with  𝛽𝑘 ≥ 0 , and we look more closed at the 

conditions used in these cases. First we check under what conditions is𝛽𝑘
𝑃𝑅 ≥ 0  𝑜𝑟 𝛽𝑘

𝑃𝑅 ≥

−𝛽𝑘
𝐹𝑅 . For strictly convex quadratic functions and exact linear searches, the PR method 

coincides with the FR method. Since always𝛽𝑘
𝐹𝑅 > 0 𝑠𝑜 𝑖𝑠 𝛽𝑘

𝑃𝑅 , let us consider strongly 

convex functions with  𝛽𝑘
𝑃𝑅 < 0, and𝛽𝑘

𝑃𝑅 ≤ −𝛽𝑘
𝐹𝑅  

We will prepare one important Proposition – 1: 

Proposition – 1: 

There exists aℂ∞  strongly convex function of two variables and a stationary point𝑥1 , for 

which PR method with exact line searching gives𝛽3
𝑃𝑅 < −𝛽3

𝐹𝑅 < 0 

Proof: 
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Introduce strictly convex quadratic function𝑓  of two variables  𝑥 =  𝑥 1 , 𝑥 2   as𝑓  𝑥 =

𝑥 1 
2 +

1

2
𝑥 2 

2  with gradient and Hessian (the Euclidean Scalar Product is assumed), i.e. ∇𝑓  𝑥 =

 
2𝑥 1 
  𝑥 2 

 ;  ∇2𝑓  𝑥 =  
2 0
0 1

  

Starting from the point𝑥1 =  −3, 3 , the PR method with exact line searches gives 

∇𝑓  𝑥1 =  
−6
   3

 ,𝛼 1 =
5

9
 𝑎𝑛𝑑 𝑥 2 =

1

3
 
1
4
  , next it finds 

∇𝑓  𝑥 2 =
2

3
 
1
2
 .𝛽2

𝑃𝑅 =
4

81
,𝑑 2 = −

10

27
 
1
4
  𝑎𝑛𝑑 𝛼 2 =

9

10
 

The third point is the solution point𝑥∗ =  0, 0  now perturb the function𝑓  inside the ball 

𝐵 0, 1 =  𝑥|𝑥 1 
2 +

1

2
𝑥 2 

2 < 1  

Defining 𝑓 𝑥 = 𝑓  𝑥 + 𝜀𝜓 𝑥  𝑤𝑒𝑟𝑒 𝜀 > 0 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙,𝜓 𝑠𝑢𝑐 𝑡𝑎𝑡  

𝜓 𝑥 = 0,∀ 𝑥 ∉ 𝐵 0, 1         (1.7) 

As the line joining𝑥1  𝑎𝑛𝑑 𝑥 2, it does not intersect the closure of 𝐵 0, 1 , i.e. the PR method 

on the new function, starting from the same point𝑥1, gives𝑥2 = 𝑥 2  𝑎𝑛𝑑 𝑑2 = 𝑑 2 

To prove how to choose the function 𝜓 𝑎𝑛𝑑 𝜀 > 0 , so that 𝑓, it is strongly convex and𝛽3
𝑃𝑅 <

0 

Take  𝜓 𝑥 = 𝜂 𝑥 ℓ 𝑥   𝑤𝑒𝑟𝑒 ℓ = 4𝑥 1 − 𝑥 2 , it is a linear function and  𝜂 𝑥  𝑖𝑛 ℂ∞  

satisfying 

𝜂 𝑥 =  
1, 𝑖𝑓 𝑥 ∈ 𝐵  0,

1

2
 

0, 𝑖𝑓 𝑥 ∉  𝐵 0, 1 

  

Clearly  𝜓  satisfies (1.7) and it has bounded second order derivatives ⟹  Choosing   𝜀 

sufficiently small, say,  0 < 𝜀 < 𝜀1 , and then Hessian of  𝑓 , it will be uniformly positive 

definite and 𝑓 𝑖𝑛 ℂ∞  , strongly convex function. Now 𝑓, it is determined in this manner, there 

is a unique minimum of  𝑓 , from𝑥2 , in the direction𝑑2 , as∇𝑓 0 = ∇𝑓  0 + 𝜀∇ 𝜓 0 =

𝜀  
   4
−1

 , it is orthogonal to𝑑2 = 𝑑 2 ,the one – dimensionalminimum is still is obtained 

at𝑥3 =  0, 0  (But this is no longer solution point) 

⟹ 𝛽3
𝑃𝑅 + 𝛽3

𝐹𝑅 =
2 ∇𝑓 0  2− ∇𝑓 0 ,∇ 𝑓 𝑥2  

 ∇ 𝑓 𝑥2  
2 =

34𝜀2− 4𝜀 3  

20 9 
. That is 𝛽3

𝑃𝑅 < −𝛽3
𝐹𝑅 < 0, 𝑖𝑓 0 < 𝜀 <

𝜀2 =
2

51
 

By taking 𝜀 ∈  0, min 𝜀1, 𝜀2  , we obtain the desired result.This proposition – 1 show that the 

convergence result, which was obtained for strongly convex function and exact line – 
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searches, is not a consequence of theorem – 2.3, since the latter requires 𝛽𝑘 ≥ 0. Nor is it a 

consequence of theorem – 2.2, because the proposition – 1 shows that𝛽𝑘
𝑃𝑅 , it can lie outside 

the interval −𝛽𝑘
𝐹𝑅 ,𝛽𝑘

𝑃𝑅  

Numerical Experiments: 

We have tested several of the algorithms suggested by the convergence analysis of this paper, 

on the collection largest test problems given in Table –2.3: The starting points used are those 

given in the references. For example: The problems of 𝑀𝑜𝑜𝑟 𝑒𝑡.𝑎𝑙[22]
 we set the parameter 

factor = 1, for test problems 8, 9 and 10 starting point 3 from the reference was used. We 

verify that each run, all the methods converge to the same solution point; otherwise the 

problem was not included in test set. The problems are not numbered consecutively because 

they belong to a larger test set. Since the Conjugate Gradient Methods are mainly used for 

large problems, our test problems have at least 100 variables. 

The following are the methods tested; they differ, only the choice of 𝛽𝑘  and possibly, in the 

line search. 

1. FR⟶The Fletcher – Reeves Method 

2. PR – FR⟶The Polack – Ribiere Method construct by the PR method (shown before) 

3. PR⟶The Polack – Ribiere Method 

4. 𝑃𝑅+ ⟶The Polack – Ribiere Method allowing only 𝛽𝑘 > 0 

For the line – search we used the algorithm of 𝑀𝑜𝑜𝑟  𝑎𝑛𝑑 𝑇𝑢𝑒𝑛𝑡𝑒 𝑒𝑡. 𝑎𝑙 (1990)[22]
. This 

algorithm finds a point satisfying the strong Wolf Conditions. We used the values𝜍1 =

10−4  𝑎𝑛𝑑 𝜍2 = 0.1, which by theorem – 2.2, ensure that methods FR and PR – FR are 

globally convergent. The line – search for PR and𝑃𝑅+ methods was performed as follows: 

First find a point satisfying the Strong Wolf Conditions, using the values of𝜍1 𝑎𝑛𝑑 𝜍2 

mentioned as above. If at this point the directional derivative of 𝑓 < 0, we know that the 

sufficient descent condition holds, and terminate the line search (already discussed before). 

On the other hand, if the directional derivative of  𝑓 > 0 , the algorithms 

of 𝑀𝑜𝑜𝑟  𝑎𝑛𝑑 𝑇𝑢𝑒𝑛𝑡𝑒 , it has bracketed a one – dimensional minimizer, and if the line 

search iteration is continued it will give, in the limit, a point 𝑥𝑘   𝑤𝑖𝑡  𝑔𝑘 ,𝑑𝑘−1 = 0. By 

continuity and (2.31a), it is clear that the line search will find a point satisfying the sufficient 

descent condition in a finite number of iterations. In the numerical we set𝜍3 = 10−2, in the 

sufficient descent condition.Our numerical experience with conjugate gradient methods 

indicates that it is advantageous to perform a reasonably accurate line search. Therefore in 

addition to setting𝜍2 = 0.1, we ensured that the line search evaluated the function at least 
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twice. The choice of the initial trial line search is also important. For the first iteration set it 

to1  𝑔1  , and for subsequent iterations we used the formula recommended byShanno and 

Phua (1980) 
[31]

, which is based on quadratic interpolation.The tests were performed on 

SPRC station – 1, using OCTAVE in double precision. All the runs were stopped 

when 𝑔𝑘 ∞ < 10−5 1 +  𝑓 𝑥𝑘   . The results in Table – 2.2 and Table – 2.3 are given in 

the form: (Number of iterations)/ (Number of function evaluation). The number under the 

column “mod” for method PR – FR denotes the number of iterations for which 𝛽𝑘
𝑃𝑅  > 𝛽𝑘

𝐹𝑅 : 

For𝑃𝑅+ , “mod” denotes the number of iterations for which𝛽𝑘
𝑃𝑅 < 0. If the limit of 9999 

function evaluations was exceeded the run was stopped; this is indicated by “*”.This 

generally occurs when the stopping criterion is very demanding. 

Table –2.1: List of Test Functions for Numerical Experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table – 2.2: Smaller Problems 

 

𝑷𝑵 

FR PR - FR PR 𝑷𝑹+ 

𝒊𝒕 𝒇 − 𝒈  𝒊𝒕 𝒇 − 𝒈  mod 𝒊𝒕 𝒇 − 𝒈  𝒊𝒕 𝒇 − 𝒈  Mod 

𝟐𝟏𝟎𝟎 𝟒𝟎𝟓 𝟖𝟐𝟕  𝟒𝟎𝟓 𝟖𝟐𝟎  351 𝟒𝟎𝟎 𝟖𝟏𝟐  𝟒𝟎𝟓 𝟖𝟏𝟐  0 

3               𝟏𝟎𝟎 𝟏𝟑𝟏𝟑 𝟐𝟔𝟐𝟕  𝟏𝟑𝟏𝟑 𝟐𝟔𝟐𝟕  1313 𝟏𝟐𝟗𝟗 𝟐𝟓𝟗𝟗  𝟏𝟐𝟗𝟗 𝟐𝟓𝟗𝟗  0 

6               𝟏𝟎𝟎 * 𝟐𝟔𝟏 𝟓𝟒𝟕  95 𝟐𝟓𝟔 𝟓𝟐𝟗  𝟐𝟓𝟒 𝟓𝟐𝟓  1 

8               𝟏𝟎𝟎 𝟏𝟎 𝟑𝟔  𝟏𝟓 𝟒𝟗  12 𝟗 𝟑𝟗  𝟏𝟐 𝟒𝟕  2 

9               𝟏𝟎𝟎 𝟕 𝟐𝟎  𝟖 𝟐𝟐  6 𝟖 𝟐𝟓  𝟕 𝟐𝟎  2 

10             𝟏𝟎𝟎 𝟏𝟏𝟔 𝟐𝟑𝟔  𝟗𝟑 𝟏𝟗𝟏  91 𝟏𝟏𝟖 𝟐𝟒𝟒  𝟏𝟏𝟗 𝟐𝟒𝟒  1 

28             𝟏𝟎𝟎 𝟏𝟒𝟐𝟔 𝟐𝟖𝟓𝟓  𝟏𝟐𝟗𝟏 𝟐𝟓𝟖𝟒  1289 𝟏𝟐𝟎 𝟐𝟖𝟎  𝟏𝟔𝟖 𝟑𝟖𝟐  3 

31             𝟏𝟎𝟎 𝟐 𝟑  𝟐 𝟑  1 𝟏 𝟒  𝟏 𝟒  0 

Problems Name References 𝒏 

2 Calculus of Variations 2 Gill and Murray (1973)
[15]

 100, 200 

3 Calculus of Variations 3 Gill and Murray (1973)
[15]

 100, 200 

6 Generalized Rosenbrock Moor et al. (1981)
[21]

 100, 500 

8 Penalty 1 Gill and Murray (1979)
[4]

 100, 1000 

9 Penalty 2 Gill and Murray (1979)
[16]

 100 

10 Penalty 3 Gill and Murray (1979)
[16]

 100, 1000 

28 Extended Powell Singular Moor et al. (1981) [
21]

 100, 1000 

31 Brown almost linear Moor et al. (1981)
[21]

 100, 200 

38 Tri diagonal 1 Buckley and LeNir (1983
) [3]

 100, 1000 

39 Linear minimal surface Toint (1983)
[33]

 121, 961 

40 Boundary – value problem Toint (1983)
[33]

 100 

41 Broyden tri diagonal nonlinear Toint (1983)
[33]

 100 

42 Extended ENGVL1 Toint (1983)
[33]

 100, 10000 

43 Extended Freudenstein and Roth Toint (1983)
[33]

 100, 1000 

45 Wrong extended Wood Toint (1983)
[33]

 100 

46 (1) Matrix square root 𝒏𝒔 = 𝟏  Liu and Nocedal (1988)
[19]

 100 

46 (2) Matrix square root 𝒏𝒔 = 𝟐  Liu and Nocedal (1988)
[19]

 100 

47 Sparse matrix square root Liu and Nocedal (1988)
[19]

 100, 1000 

48 Extended Rosenbrock Moor et al. (1981)
[21]

 1000, 10000 

49 Extended Powell Moor et al. (1981)
[21]

 100, 1000 

50 Tri diagonal 2 Toint (1983)
[33]

 100, 1000 

51 Trigonometric Moor et al. (1981)
[21]

 100, 1000 

52 Penalty 1 (2
nd

 version) Moor et al. (1981)
[21]

 1000, 10000 
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38             𝟏𝟎𝟎 𝟕𝟎 𝟏𝟒𝟐  𝟕𝟎 𝟏𝟒𝟐  47 𝟕𝟏 𝟏𝟒𝟒  𝟕𝟏 𝟏𝟒𝟒  0 

39             𝟏𝟐𝟏 * 𝟓𝟗 𝟏𝟐𝟐  4 𝟓𝟗 𝟏𝟐𝟐  𝟓𝟗 𝟏𝟐𝟐  0 

40             𝟏𝟎𝟎 𝟏𝟕𝟓 𝟑𝟓𝟏  𝟏𝟕𝟓 𝟑𝟓𝟏  175 𝟏𝟑𝟐 𝟐𝟔𝟔  𝟏𝟑𝟐 𝟐𝟔𝟔  0 

41             𝟏𝟎𝟎 𝟐𝟗 𝟔𝟎  𝟐𝟒 𝟓𝟎  1 𝟐𝟒 𝟓𝟎  𝟐𝟒 𝟓𝟎  0 

42             𝟏𝟎𝟎𝟎 𝟏𝟎 𝟐𝟕  𝟗 𝟐𝟓  8 𝟏𝟎 𝟑𝟒  𝟗 𝟑𝟎  2 

43             𝟏𝟎𝟎 𝟏𝟔 𝟒𝟏  𝟏𝟒 𝟑𝟗  13 𝟏𝟔 𝟒𝟒  𝟏𝟑 𝟑𝟕  1 

45             𝟏𝟎𝟎 * 𝟕𝟒 𝟏𝟔𝟔  66 𝟑𝟕 𝟗𝟎  𝟒𝟓 𝟏𝟎𝟗  3 

46(1)        𝟏𝟎𝟎 𝟔𝟏𝟕 𝟏𝟐𝟑𝟖  𝟐𝟓𝟑 𝟓𝟏𝟎  248 𝟐𝟓𝟕 𝟓𝟏𝟖  𝟐𝟓𝟕 𝟓𝟏𝟖  0 

46(2)        𝟏𝟎𝟎 𝟖𝟖𝟔 𝟏𝟕𝟕𝟔  𝟐𝟓𝟏 𝟓𝟎𝟔  243 𝟐𝟓𝟏 𝟓𝟎𝟔  𝟐𝟓𝟏 𝟓𝟎𝟔  0 

47             𝟏𝟎𝟎 𝟏𝟓𝟏 𝟑𝟎𝟔  𝟓𝟗 𝟏𝟐𝟐  50 𝟔𝟎 𝟏𝟐𝟒  𝟔𝟎 𝟏𝟐𝟒  0 

48             𝟏𝟎𝟎𝟎 𝟕𝟗 𝟏𝟖𝟓  𝟕𝟏 𝟏𝟕𝟐  66 𝟐𝟔 𝟕𝟑  𝟐𝟑 𝟕𝟎  3 

49             𝟏𝟎𝟎 𝟏𝟒𝟐𝟔 𝟐𝟖𝟓𝟓  𝟏𝟐𝟗𝟏 𝟐𝟓𝟖𝟒  1289 𝟏𝟏𝟕 𝟐𝟖𝟏  𝟏𝟔𝟖 𝟑𝟖𝟐  3 

50             𝟏𝟎𝟎 𝟕𝟐 𝟏𝟒𝟔  𝟕𝟐 𝟏𝟒𝟔  52 𝟕𝟐 𝟏𝟒𝟔  𝟕𝟐 𝟏𝟒𝟔  0 

51             𝟏𝟎𝟎 𝟐𝟎𝟐 𝟒𝟎𝟗  𝟒𝟐 𝟗𝟒  12 𝟒𝟓 𝟏𝟎𝟑  𝟒𝟓 𝟏𝟎𝟑  0 

52             𝟏𝟎𝟎𝟎 𝟑 𝟏𝟎  𝟑 𝟏𝟎  2 𝟒 𝟏𝟐  𝟒 𝟏𝟐  2 

   

Table – 2.3: Larger Problems 

 

 

𝑷𝑵 

FR PR – FR PR 𝑷𝑹+ 

𝒊𝒕 𝒇 − 𝒈  𝒊𝒕 𝒇 − 𝒈  Mod 𝒊𝒕 𝒇 − 𝒈  𝒊𝒕 𝒇 − 𝒈  mod 

𝟐𝟐𝟎𝟎 𝟕𝟎𝟑 𝟏𝟒𝟐𝟒  𝟕𝟎𝟏 𝟏𝟒𝟐𝟎  591 𝟕𝟎𝟏 𝟏𝟒𝟐𝟎  𝟕𝟎𝟏 𝟏𝟒𝟐𝟎  0 

3               𝟐𝟎𝟎 𝟐𝟖𝟎𝟖 𝟓𝟔𝟏𝟕  𝟐𝟖𝟎𝟖 𝟓𝟔𝟏𝟕  2808 𝟐𝟔𝟑𝟏 𝟓𝟐𝟔𝟑  𝟐𝟔𝟑𝟏 𝟓𝟐𝟔𝟑  0 

6               𝟓𝟎𝟎 * 𝟏𝟏𝟎𝟕 𝟐𝟐𝟑𝟏  433 𝟏𝟎𝟔𝟖 𝟐𝟏𝟓𝟏  𝟏𝟎𝟔𝟕 𝟐𝟏𝟒𝟗  1 

8               𝟏𝟎𝟎𝟎 𝟏𝟐 𝟑𝟗  𝟗 𝟑𝟒  7 𝟔 𝟐𝟖  𝟏𝟎 𝟒𝟐  2 

10             𝟏𝟎𝟎𝟎 𝟏𝟑𝟖 𝟐𝟖𝟏  𝟏𝟒𝟓 𝟐𝟗𝟗  142 𝟏𝟔𝟓 𝟑𝟑𝟖  𝟏𝟔𝟓 𝟑𝟑𝟖  0 

28             𝟏𝟎𝟎𝟎 𝟓𝟑𝟑 𝟏𝟏𝟎𝟐  𝟏𝟑𝟔𝟗 𝟐𝟕𝟒𝟏  1366 𝟐𝟏𝟐 𝟒𝟕𝟑  𝟗𝟕 𝟐𝟐𝟗  3 

31             𝟐𝟎𝟎 𝟐 𝟒  𝟐 𝟒  1 𝟏 𝟓  𝟏 𝟓  0 

38             𝟏𝟎𝟎𝟎 𝟐𝟔𝟒 𝟓𝟑𝟏  𝟐𝟔𝟑 𝟓𝟐𝟗  217 𝟐𝟔𝟐 𝟓𝟐𝟕  𝟐𝟔𝟐 𝟓𝟐𝟕  0 

39             𝟗𝟔𝟏 * 𝟏𝟒𝟑 𝟐𝟐𝟎  5 𝟏𝟒𝟐 𝟐𝟖𝟕  𝟏𝟒𝟐 𝟐𝟖𝟕  0 

42             𝟏𝟎𝟎𝟎𝟎 𝟔 𝟐𝟔  𝟔 𝟐𝟔  5 𝟕 𝟐𝟖  𝟔 𝟐𝟔  1 

43             𝟏𝟎𝟎𝟎 𝟏𝟎 𝟐𝟕  𝟏𝟓 𝟑𝟖  15 𝟏𝟎 𝟑𝟑  𝟗 𝟐𝟗  2 

47             𝟏𝟎𝟎𝟎 𝟒𝟐𝟐 𝟖𝟒𝟗  𝟏𝟏𝟒 𝟐𝟑𝟑  92 𝟏𝟏𝟑 𝟐𝟑𝟏  𝟏𝟏𝟑 𝟐𝟑𝟏  0 

48             𝟏𝟎𝟎𝟎𝟎 𝟔𝟏 𝟏𝟒𝟑  𝟏𝟑𝟎 𝟐𝟖𝟑  123 𝟐𝟒 𝟕𝟑  𝟏𝟗 𝟔𝟐  4 

49             𝟏𝟎𝟎𝟎 𝟓𝟔𝟖 𝟏𝟏𝟕𝟓  𝟏𝟑𝟔𝟗 𝟐𝟕𝟒𝟏  1366 𝟐𝟏𝟐 𝟒𝟕𝟑  𝟗𝟕 𝟐𝟐𝟗  3 

50             𝟏𝟎𝟎𝟎 𝟐𝟕𝟒 𝟓𝟓𝟏  𝟐𝟕𝟑 𝟓𝟒𝟗  245 𝟐𝟕𝟒 𝟓𝟓𝟏  𝟐𝟕𝟒 𝟓𝟓𝟏  0 

51             𝟏𝟎𝟎𝟎 𝟐𝟑𝟏 𝟒𝟔𝟕  𝟒𝟎 𝟗𝟏  5 𝟒𝟎 𝟗𝟐  𝟒𝟎 𝟗𝟐  0 

52             𝟏𝟎𝟎𝟎𝟎 𝟒 𝟏𝟓  𝟒 𝟏𝟓  4 𝟑 𝟏𝟑  𝟑 𝟏𝟑  1 

   

Conclusion and Future Study for Global Convergence: 

For Category – 1:Other Random Models: 

Additional settings where relying on random models may given an advantage for an 

optimization scheme occur in a parallel environment when full synchronization is not needed: 

We may wish to consider the following asynchronous setting: Each processor takes, differ 

random amount of time to compute a function value. Let us consider a time budget  𝜏 , and 

assume that a sufficiently large number of function evaluations are computed in less 

than 𝜏 time, with some sufficiently high probability. If we assign function evaluations to 

processors randomly, then the resulting sample set is random and the resulting model is well 
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– poised with high probability. Alternatively we may consider a setting the objective function 

is evaluated approximately for each sample point, with some high probability of this 

approximation being accurate, but yet some small probability of a bad approximation. In this 

case the resulting interpolation/Regression model will provide a good approximation with 

high probability. Note that when computing the function value at the potential new iterate 

(rather than a sample point) and assuming that an accurate value is computed. Relaxing this 

condition is also a subject for future study. 

Reusing Sample Points: 

In sequential computational setting with expensive function evaluations it is efficient to reuse 

existing sample points in the vicinity of the current iterations. The success of the second 

method in the example above indicates that sparse models based on greedy sample sets are 

useful, even though the sparse recovery properties are unlikely to hold for such sets. Hence 

the random sample models may be dependent in some practical approaches. An obvious 

example o a method which reuses sample points and relies on sample models would be as 

follows. For each of iterations the interpolation model is build based on up to  𝑛 + 1 existing 

sample points and an additional number of random sample points. The past points picked so 

that they are in a reasonable vicinity of the current iterate and so that they form a well – 

poised set. For various technique of selecting such a set 
[8]

, the random points are selected to 

enrich the current set of sample points. The resulting sample set clearly depends on the 

history of the algorithm, on the other hand, if the set of re – used sample points is well poised, 

then the whole set is well – poised with sufficiently high probability. Investigating general 

cases of models when the sub martingale property holds, or relaxing the sub martingale 

property in a controlled way, and deriving new convergence results is a subject of our future 

research. Before more detailed analysis is derived it is essential to identify classes of random 

models that best perform in practice. 

For Category – 2: 

From the table 2.1 to 2.3, we conclude that𝛽𝑘
𝑃𝑅 , it was constrained in most of the iterations of 

the method PR – FR, but was quite rarely modified in the𝑃𝑅+ method. Many of the problems 

were run again for a larger number of variables. The results are given in Table – 3: The 

performance of methods Pr – FR, PR and𝑃𝑅+ , it is comparable. Over all, 𝑃𝑅+ appears to be 

better that PR. The FR method is clearly the last efficient, requiring an exceedingly large 

number of function evaluations in some problems. 



  International Journal of Advanced Research in  ISSN: 2278-6252 

 Engineering and Applied Sciences  Impact Factor: 7.358 
 

Vol. 6 | No. 5 | May 2017 www.garph.co.uk IJAREAS | 29 
 

In these runs the methods were implemented without restarting. We also performed test in 

which the methods were restarted along the steepest descent direction every  𝑛 iterations. 

(Since  𝑛 it is large, very few restarts were performed). The FR method improved 

substantially, but this method was still the least efficient of the four. The other three methods 

performed similarly with and without restarts, and we will not present the results here: We 

can give an example that illustrates the inefficient behavior of the FR method, as mentioned 

before. In the Table Problem – 45 with  𝑛 = 100 , observed that for hundreds of 

iterationscos 𝜃𝑘stays fairly constant, and is of order10−2, while the steps 𝑥𝑘 − 𝑥𝑘−1 , they 

are of order10−2 𝑡𝑜 10−3 . This causes the algorithm to require a very large number of 

iterations to approach the solution. A restart along the steepest descent direction terminates 

this cycle of bad search directions and tiny steps. A similar behavior was observed in several 

other given problems in Table – 2.1. 
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