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Abstract: In this article we are concerned with Existence and Uniqueness of Solutions for a 

Class of Linear Elliptic Equations of Dirichlet Problem in Divergence Form. We obtain 

Weak Solutions from classical solution for equations by relaxing the Conditions on the 

solution and on the data  𝑓  of the given problem. 

𝐿 𝑥, 𝐷 𝑢 =   −1  𝜎 
0≤ 𝜎 , 𝛾 ≤𝑘 𝐷 𝜎  𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 = 𝑓    𝑖𝑛  𝛺 , and 

𝐷𝛼𝑢 = 0    𝑓𝑜𝑟  𝛼 ≤ 𝑘 − 1   𝑜𝑛 𝜕𝛺  

Key Words: Sobolev spaces, Elliptical point or Domain, Garding’s Inequality, Class Linear 

Functions, Support 

INTRODUCTION 

In this paper, we are concerned with the following elliptic problem: 

𝐿 𝑥, 𝐷 𝑢 =   −1  𝜎 
0≤ 𝜎 , 𝛾 ≤𝑘 𝐷 𝜎  𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 = 𝑓    𝑖𝑛  Ω     (1) 

And 𝐷𝛼𝑢 = 0    𝑓𝑜𝑟  𝛼 ≤ 𝑘 − 1   𝑜𝑛 𝜕Ω        (2) 

Basic Concepts and Some Definitions: 

Definition for Soboleve space: 
[1], [12] 

The Soboleve space  𝑊𝑘 ,𝑝 Ω  consists of those functions 𝑓 𝑖𝑛 𝐿𝑝 Ω  such that all the 

distributional derivatives of 𝑓 of order at least 𝑘 and they are also in  𝐿𝑝 Ω , or 

𝑊𝑘 ,𝑝 Ω =  𝑓 ∈ 𝐿𝑝 Ω |𝐷𝛼𝑓 ∈ 𝐿𝑝 Ω   𝑓𝑜𝑟 𝑎𝑙𝑙  𝛼 ≤ 𝑘   

Definition for Partial Differential Equation: 

A partial deferential equation is an equation involving an unknown function of two or more 

variables and certain of its partial derivatives and an expression of the form is 

𝐹 𝐷𝑘𝑢 𝑥 , 𝐷𝑘−1𝑢 𝑥 , … , 𝐷𝑢 𝑥 , 𝑥 = 0  ∀  𝑥 ∈  Ω  

It is called a  𝑘𝑡  order partial differential equation where  

𝐹: ℝ𝑛𝑘
× ℝ𝑛𝑘−1

× … × ℝ𝑛 × ℝ × Ω ⟶ ℝ , it is given and 
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𝑢: Ω ⟶ ℝ, it is the unknown function. The Soboleve spaces are useful tools to solve partial 

differential equation. 

Remark: 

There is an important notation “Well – posed problems” in Partial Differential Equation 

Theory (PDET). Roughly a given problem of PDE is well posed if 

a. The problem has in fact a solution 

b. The exists solution is unique 

c. Exists solution depends continuously on the data given in the problem. 

The condition (c) of particular importance in its application of problem arising from 

Differential Geometry and Physics: 

Basic Theorems and Definitions: 

Definition for Class Functions: 

Let 𝑝 ≥ 1 it is a real number, Ω it is an open subset of  ℝ𝑛   𝑓𝑜𝑟 𝑛 ≥ 1, and then 

𝐿𝑝 Ω =  Class of functions𝑣: Ω ⟶ ℝ  𝑠𝑢𝑐 𝑡𝑎𝑡  𝑣 𝑥  ≤ 𝐶 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒𝑣𝑒𝑟𝑦𝑤𝑒𝑟𝑒 𝑥 ∈ Ω   

Equipped with the norms 

 𝑣 𝑝 ,Ω =    𝑣 𝑥  𝑝𝑑𝑥
.

Ω
 

1

𝑝          (1.1) 

And   𝑣 ∞,Ω = inf 𝐶, 𝑠𝑢𝑐 𝑡𝑎𝑡  𝑣 𝑥  ≤ 𝐶 𝑎𝑙𝑚𝑜𝑠𝑡 𝑒𝑣𝑒𝑟𝑦𝑤𝑒𝑟𝑒 𝑥 ∈ Ω   (1.2) 

Moreover for any  1 ≤ 𝑝 < ∞ the dual of  𝐿𝑝 Ω (The set of all bounded linear functional) can 

be defined with  𝐿𝑞 Ω   𝑤𝑒𝑟𝑒 𝑞, it is the conjugate number of 𝑝 such that  
1

𝑝
+

1

𝑞
= 1 

Definitions: 

1. The class of local function is that, the set of functions 𝑣 defined on  Ω such that for 

any  Ω′ ⊂ Ω bounded such that one has  𝑣 ∈ 𝐿𝑞 Ω′ included and denoted by  𝐿𝑙𝑜𝑐
𝑝  Ω′  

2. The support of a function 𝑓, it is defined as 𝑠𝑢𝑝𝑝 𝑓 =The closure of the set  𝑥 ∈

Ω|𝑓𝑥≠0and 

𝑠𝑢𝑝𝑝 𝑓 =  𝑥 ∈ Ω|𝑓 𝑥 ≠ 0   

3. The space of functions infinitely differentiable in with compact support in Ω and 

denoted by 𝐷 Ω  

Definition for Weak or Distributional: 

Let  𝛼 , it is a multi index and supposes that  𝑢, 𝑣 ∈ 𝐿𝑙𝑜𝑐
1  Ω  𝑎𝑛𝑑  𝑢 𝑥 

.

Ω
𝐷𝜔

𝛼𝜂 𝑥 𝑑𝑥 =

 −1  𝛼  𝑣 𝑥 
.

Ω
𝜂 𝑥  𝑑𝑥  ∀ 𝜂 ∈ 𝐶0

∞  Ω  
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Then 𝑣, it is called the weak or distribution partial derivative of 𝑢  𝑖𝑛  Ω, and it is denoted 

by 𝐷𝜔
𝛼𝑢 

Notes: 

a. If 𝑢 𝑥   sufficiently smooth to have continuous derivative of  𝐷𝜔
𝛼𝑢, by integrating use 

integrating by parts  𝑢 𝑥 
.

Ω
𝐷𝜔

𝛼𝜂 𝑥 𝑑𝑥 =  −1  𝛼  𝑣 𝑥 
.

Ω
𝜂 𝑥  𝑑𝑥 , and hence the 

classical derivative  𝜕𝛼 , it is also the weak derivative and also  𝐷𝜔
𝛼𝑢 it may exist in the 

weak sense without existing in the classical sense. 

b. In the soboleve space 𝑊𝑘 ,𝑝 Ω , let 𝑢 ∈ 𝐿𝑝 Ω  𝑎𝑛𝑑 𝑢 ∈ 𝑊𝑘 ,𝑝 Ω , if for any multi 

index 𝛼 such that   𝛼 ≤ 𝑘, 𝐷𝛼𝑢 exists in the weak sense and belongs to 𝐿𝑝 Ω  

c. If 𝑝 = 1, the notation  𝑊𝑘 ,𝑝 Ω , becomes  𝑊𝑘 ,1 Ω , and if 𝑝 = 2, the notation 𝐻𝑘 Ω  it 

is used as 𝐻𝑘 Ω = 𝑊𝑘 ,2 Ω        (1.3) 

d. And also the letter 𝐻 certainly stands for  𝐻𝑘 , it is a Hilbert Space 

e. We also certainly define  𝑊𝑙𝑜𝑐
𝑘 ,𝑝 Ω  as in the definition of 𝐿𝑙𝑜𝑐

𝑝  Ω  that is we define the 

norm of  𝑊𝑘 ,𝑝 Ω , 𝑎𝑠 1 ≤ 𝑝 < ∞ 

f.  𝑢 𝑘 ,𝑝
𝑝 =  𝑢 

𝑊𝑘 ,𝑝
𝑝

=    𝐷𝛼𝑢 𝑝
.

Ω 𝛼 ≤𝑘 𝑑𝑥 =   𝐷𝛼𝑢 𝑝
𝑝

 𝛼 ≤𝑘     (1.4) 

g. And for 𝑝 = 2, we define an inner product by 

 𝑢, 𝑣 𝑘 =   𝐷𝛼𝑢 𝑥 
.

Ω
𝑣 𝑥  𝛼 ≤𝑘 𝑑𝑥       (1.5) 

Examples: 

1. For 1 ≤ 𝑝 < ∞, we have 

 𝑢 1,𝑝 =    𝑢 𝑝 +   
𝜕𝑢

𝜕𝑥𝑖
 
𝑝

𝑑𝑥𝑛
𝑖=1

.

Ω
 

1

𝑝
  

 𝑢 2,𝑝 =    𝑢 𝑝 +   
𝜕𝑢

𝜕𝑥𝑖
 
𝑝

𝑑𝑥𝑚
𝑖=1 +   

𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
 
𝑝

𝑑𝑥𝑚
𝑖 ,𝑗=1

.

Ω
 

1

𝑝

 , and so on 

𝑊0
𝑝 =  𝑢 ∈ 𝑊𝑘 ,𝑝 |𝑢𝑘 ⟶ 𝑢 ∈ 𝑊𝑘 ,𝑝 Ω , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  𝑢𝑘 ∈ 𝐶0

∞ Ω    

2. Let Ω it is an open subset of  ℝ𝑛 , and denote by  𝐻1 Ω , it is the subset of 𝐿2 Ω , and it 

is defined by  𝐻1 Ω =  𝑣 ∈ 𝐿2 Ω |𝜕𝑥𝑖
𝑣 ∈ 𝐿2 Ω , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑛 , where 𝜕𝑥𝑖

𝑣, it is 

the derivative of distribution sense. 

3. In what follows we will be in deed of functions vanishing on the boundary  𝜕Ω  𝑜𝑓 Ω . 

However for a class of functions in  𝐿2 Ω , the meaning of its value on 𝜕Ω, it is not 

clear. So we will  overcome this problem by introducing  

𝐻0
1 Ω =  𝑇𝑒 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑜𝑓𝐷 Ω ∈ 𝐻1 Ω  =  𝐷 Ω ∈ 𝐻1 Ω    
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4. The closure being understood for the norm (1.4) and also  𝐻0
1 Ω , it will play the role of 

the function  𝐻1 Ω , and it vanish on 𝜕Ω 

5. The dual space of  𝐻0
𝑘 Ω , and it is denoted by  𝐻−𝑘 Ω , i.e., 

𝐻−𝑘 Ω =  𝐻0
𝑘 Ω  

∗

         (1.6)  

Theorem – 1: 

If  𝑓 ∈ 𝐿𝑙𝑜𝑐
1  Ω  such that  𝐷𝛼𝑓exists, for every 𝛼,  𝛼 ≤ 𝑘 and if 𝑔 ∈ 𝐶𝑘 Ω , and then 𝑓𝑔 

admits all weak derivatives up to order 𝑘 and also 

𝐷𝛼 𝑓𝑔 =   
𝛼
𝛽  𝛼 ≤𝑘 𝐷𝛽𝑔𝐷𝛼−𝛽𝑓        (1.7) 

Where 𝛼 > 𝛽  𝑎𝑛𝑑  
𝛼
𝛽 =

𝛼 !

𝛽 ! 𝛼−𝛽 !
 

Theorem – 2 – (Holder’s Inequality) 
[9], [13], [11]  

If 𝑓 𝑎𝑛𝑑 𝑔, they are measurable functions defined on  Ω and  𝑝 𝑎𝑛𝑑 𝑞 they are conjugate and 

then 

  𝑓𝑔 
.

Ω
𝑑𝜇 =  𝑓𝑔 1 ≤  𝑓 𝑝 𝑔 𝑝         (1.8) 

Definition for  𝑳 𝝎
𝟐  𝛀 : 

Let Ω it is an open subset of  ℝ𝑛 , and let  𝜔: Ω ⟶ ℝ+, it is a continuous function and then 

define 

𝐿  𝜔
2  Ω =   𝑢 ∈ 𝐶 Ω   𝜔 𝑥  𝑢 𝑥  2𝑑𝑥

.

Ω
< ∞       (1.9) 

And also the inner product is defined by   𝑢, 𝑣 =  𝜔 𝑥  𝑢 𝑥  𝑣 𝑥 𝑑𝑥
.

Ω
 

The space  𝐿𝜔
2  Ω , it is the completion of  𝐿 𝜔

2  Ω  

Theorem – 3: 

The Fourier transform 𝐹 it is a homeomorphism from  𝐻𝑘 ℝ𝑛  onto the weighted 

space 𝐿𝜔
2  ℝ𝑛  where 𝜔 𝜀 = 1 +  𝜀 2𝑘  and denotes  𝐿𝑘

2 , it is weighted 𝐿2 space implies 

that  𝐷 ℝ𝑛 , it is the dense in 𝐻𝑘 ℝ𝑛  

Definition for Embedded: 

Let  𝑌, 𝑍, they are Banach spaces, and say 𝑌, it is continuously embedded in 𝑍 and writes 
[3]

 

𝑌 ↪ 𝑍, 𝑎𝑛𝑑 𝑖𝑓 𝑌 ⊂ 𝑍, and then there is a constant 𝐶 such that 

 𝑢 𝑍 ≤ 𝐶 𝑢 𝑌 , ∀  𝑢 ∈ 𝑌         (1.10) 

Definition for Compactly Embedded: 

Let  𝑋, 𝑌, they are Banach spaces such that 𝑋, it is continuously embedded in 𝑌 and say 

that 𝑋, it is compactly embedded in 𝑌, and denoted by 𝑋 ↪𝐶 𝑌, and also if the unit ball in 𝑋, 
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it is pre compact in 𝑌, or, equivalently, every bounded sequence in 𝑋, it has a sub sequence 

that convergence in 𝑌 

Lemma – 1 – (Ehrling’s Lemma): 
[8]

 

Let 𝑋, 𝑌, 𝑍, they are Banach spaces. Assumes that 𝑋, it is continuously embedded in 𝑌 𝑎𝑛𝑑 𝑌, 

it is continuously embedded in 𝑍, i.e. 𝑋 ↪𝐶 𝑌 ↪ 𝑍, and then, for every 𝜀 > 0 there exists a 

constant  𝐶 𝜀  such that   𝑥 𝑌 ≤  𝜀 𝑥 𝑋 +  𝑥 𝑍 , ∀  𝑥 ∈ 𝑋 

Remark: 

Assume that it is bounded and  𝐻𝑘 Ω ↪𝐶 𝐻𝑘−1 Ω  then the following norms on 𝐻𝑘 , they are 

equivalent 

 𝑢 𝑘 ,2
2 =   𝐷𝛼𝑢 2

2
 𝛼 ≤𝑘          (1.11) 

 𝑢 12,𝑘 ,∗
2 =   𝐷𝛼𝑢 2

2
 𝛼 =𝑘 +  𝑢 1

2        (1.12) 

And also by the Poincare’s Inequality we can easily verify that in the space  𝐻0
𝑘 , we simply 

leave the norm  𝑢 1
2, and also Ω, it is need not be bounded, it suffices that it to be bounded in 

one direction 

Theorem – 4 – Poincare’s Inequality 
[2], [3], [4], [8], [11]

 

Let Ω it is contained in the strip   𝑥1 ≤ 𝑑 < ∞. Then there is a constant 𝐶, depending only 

on 𝑘 𝑎𝑛𝑑 𝑑, such that  𝑢 𝑘 ,2
2 ≤ 𝐶   𝐷𝛼𝑢 2

2
 𝛼 =𝑘 , 𝑢 ∈ 𝐻0

𝑘     (1.13) 

Remark: 

For  𝑝 ∈   1, ∞  , the above result holds. In other words satisfies the hypothesis of theorem – 4 

and then there is a constant 𝐶, depending only on 𝑘  𝑑, 𝑎𝑛𝑑 𝑝, such that 

 𝑢 𝑘 ,2
2 ≤ 𝐶   𝐷𝛼𝑢 2

2
 𝛼 =𝑘 , 𝑢 ∈ 𝑊0

𝑘 ,𝑝
       (1.14) 

Notations Used in this Article: 

Let  Ω, it is an open subset of  ℝ𝑛 , and 𝑢: Ω ⟶ ℝ 𝑎𝑛𝑑  Ω, it is a function and Ω it is assumed 

to be connected bounded if not specified otherwise: Without specification, we always assume 

that 𝑢, it has enough derivatives and we use the following notation for derivatives: 

𝐷𝑢 =  𝐷1𝑢, 𝐷2𝑢, … , 𝐷𝑛𝑢 ;  𝐷𝑖𝑢 =
𝜕𝑢

𝜕𝑥𝑖
; 𝐷𝑖𝑗 𝑢 =

𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
  , and also 

∆𝑢 =  𝐷𝑖𝑖𝑢 = 0, and it is called The General Laplace Equation. 

We also use multi index notations for further research in this article as follows: 

a. A vector of the form 𝛼 =  𝛼1, 𝛼2, … , 𝛼𝑛   𝑤𝑒𝑟𝑒 𝛼𝑖 ∈ 𝑁0
𝑛  , it is called the multi index 

of the order   𝛼 =  𝛼𝑖
𝑛
𝑖=1  

b. For a given a multi index 𝛼, define  𝐷𝛼𝑢 𝑥 =
𝜕  𝛼 𝑢

𝜕𝑥1
𝛼1…𝜕𝑥𝑛

𝛼𝑛  
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c. For any  𝑚 ∈ 𝑁, denoted 𝐷𝑚𝑢 𝑥 =  𝐷𝛼𝑢 𝑥 | 𝛼 = 𝑚 , the set of all partial 

derivatives of order 𝑚, and also regard 𝐷𝑚𝑢 𝑥  as a point in  ℝ𝑛𝑚
 (with any specified 

order) and 

  𝐷𝑚𝑢 𝑥  2 =    𝐷𝛼𝑢 𝑥  2
 𝛼 =𝑚   

When 𝑚 = 1 𝑡𝑒𝑛 𝐷𝑢 =  𝐷1𝑢, 𝐷2𝑢, … , 𝐷𝑛𝑢 , it is the Gradient operator that is 

 ∇𝑢 =    
𝜕𝑢

𝜕𝑥𝑗
 

2
𝑛
𝑗 =1  

1

2

=    𝐷𝑗 𝑢 
2𝑛

𝑗 =1  

1

2
  

d. When 𝑚 = 2 𝑡𝑒𝑛 𝐷2𝑢 = 𝐷𝑖𝑗 𝑢  𝑎𝑠 𝑛 × 𝑛 matrix and it is called Hessian of 𝑢 

Linear Elliptic Equation: 
[8]

  

The symbol of the expression  𝐿 𝑥, 𝐷 , it is given by  𝐿 𝑥, 𝑖𝜉 =  𝑎𝛼 𝑥  𝑖𝜉 𝛼
 𝛼 ≤𝑚 , and also 

the principal part of the symbol is 𝐿𝑝 𝑥, 𝑖𝜉 =  𝑎𝛼 𝑥  𝑖𝜉 𝛼
 𝛼 =𝑚  

Example: 

Consider the second order PDE in two space dimensions 

𝐿𝑢 = 𝑎 𝑥, 𝑦 𝑢𝑥𝑥 + 𝑏 𝑥, 𝑦 𝑢𝑥𝑦 + 𝑐 𝑥, 𝑦 𝑢𝑦𝑦 + 𝑑 𝑥, 𝑦 𝑢𝑥 + 𝑒 𝑥, 𝑦 𝑢𝑦 + 𝑓 𝑥, 𝑦 𝑢 = 𝑔 𝑥, 𝑦   

The principal part of the symbol of  𝐿, it is  𝐿𝑝 𝑥, 𝑦, 𝑖𝜉, 𝑖𝜂 = −𝑎 𝑥, 𝑦 𝜉2 − 𝑏 𝑥, 𝑦 𝜉𝜂 −

𝑐 𝑥, 𝑦 𝜂2 

This can be represented in matrix form as  𝐿𝑝 =  𝜉 𝜂  
−𝑎 𝑥, 𝑦 −

1

2
𝑏 𝑥, 𝑦 

−
1

2
𝑏 𝑥, 𝑦 −𝑐 𝑥, 𝑦 

  
𝜉
𝜂
  

Definition for Elliptic at a Point: 

A differential operator of order 𝑚, it is elliptic at  𝑥0, if and only if 

𝐿𝑝 𝑥0, 𝜉 =  𝑎𝛼 𝑥  𝑖𝜉 𝛼
 𝛼 =𝑚 ≠ 0, ∀ 𝜉 ∈ ℝ𝑛  0    

Lemma – 2: 

If a linear partial differential operator 𝐿 of order  𝑚, it is elliptic at  𝑥0 ∈ ℝ𝑛 , 𝑓𝑜𝑟 𝑛 > 1 

then 𝑚, it is an even integer   𝑚 = 2𝑘  𝑎𝑛𝑑 𝜉 ⟶ 𝐿𝑝 𝑥0, 𝜉 , it is continuous and takes on the 

value 0, only at 𝜉 ≠ 0 

Proof: 

By the definition assume that, 𝜉 ⟶ 𝐿𝑝 𝑥0, 𝜉  it is continuous and takes on the value 0, only 

at 𝜉 = 0 

Suppose  𝐿𝑝 𝑥0, 𝜉 < 0  𝑎𝑛𝑑 𝐿𝑝 𝑥0, 𝜉 > 0, and then connect  𝜉1  𝑎𝑛𝑑 𝜉2, using a path not 

going through 0, as noted: 𝐿𝑝 𝑥0, 𝜉  it must vary continuously along the path, taking on the 

value 0, this is contradiction to our assumption 
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It now follows that, for any  𝜉 ∈ ℝ𝑛 , 𝐿𝑝 𝑥0, 𝜉   𝑎𝑛𝑑 𝐿𝑝 𝑥0, −𝜉 =  −1 𝑚𝐿𝑝 𝑥0, 𝜉 , they must 

have the same sign. This implies that 𝑚, it is an even integer 

Definition for Elliptic in Domain: 

Let  Ω ∈ ℝ𝑛 , it is a domain and we say that a linear partial differential operator 

𝐿 𝑥, 𝐷 =  𝑎𝛼 𝑥 𝜉𝛼0, ∀  𝑥 ∈ Ω, 𝛼 =2𝑘 𝜉 ∈ ℝ𝑛  0        (1.15) 

And also 𝐿, it is uniformly Elliptic in Ω  and if there exists a constant Ɵ > 0, such that 

𝐿 𝑥, 𝐷 =  −1 𝑘  𝑎𝛼 𝑥 𝜉𝛼 ≥ Ɵ 𝜉 2𝑘 , ∀  𝑥 ∈ Ω, 𝛼 =2𝑘 𝜉 ∈ ℝ𝑛  0     (1.16) 

Definition for Divergence: 
[2], [15] 

An operator is divergence form if there are functions  𝑎𝜎𝛾 : Ω ⟶ ℝ, and then 

𝐿 𝑥, 𝐷 𝑢 =   −1  𝜎 𝐷𝜎 𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 0≤ 𝜎 , 𝛾 ≤𝑘       (1.17) 

Remark: 

An operator in divergence form is Elliptic if and only of 

 𝜉𝜎 𝑎𝜎𝛾  𝑥 𝜉𝛾 > 0, 𝜎 , 𝛾 =𝑘 ∀𝑥 ∈ Ω, 𝜉 ∈ ℝ𝑛  0        (1.18a) 

And also the operator is uniformly Elliptic if and only if there exists a constant Ɵ > 0, such 

that 

 𝜉𝜎 𝑎𝜎𝛾  𝑥 𝜉𝛾 > Ɵ 𝜉 2𝑘 , 𝜎 , 𝛾 =𝑘 ∀𝑥 ∈ Ω, 𝜉 ∈ ℝ𝑛  0       (1.18b) 

Lemma – 3: 

Let 

𝑎𝛼 ∈ 𝐶𝑏
 𝛼 −𝑘 Ω , 𝑓𝑜𝑟 𝑘 <  𝛼 < 2𝑘, and      (1.19)  

𝑎𝛼 ∈ 𝐶𝑏 Ω , 𝑓𝑜𝑟  𝛼 ≤ 𝑘         (1.20) 

And then there exists  𝑎𝜎𝛾 ∈ 𝐶𝑏
 𝜎 

 Ω , such that for every  𝑢 ∈ 𝐶2𝑘 Ω , we have 

𝐿 𝑥, 𝐷 𝑢 =  𝑎𝛼 𝑥 𝐷𝛼𝑢 𝛼 ≤2𝑘         (1.21) 

And 𝐿 𝑥, 𝐷 𝑢 =   −1  𝜎 𝐷 𝛼  𝑎𝜎𝛾𝛾  𝑥 𝐷𝛾𝑢  𝛼 ≤2𝑘      (1.22) 

Proof: 

For every   𝛼 ≤ 2𝑘, choose  𝜎𝛼   𝑎𝑛𝑑 𝛾𝛼satisfying  𝜎𝛼  ,  𝛾𝛼  ≤ 𝑘  𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝜎𝛼 + 𝛾𝛼 = 𝛼  

Note that this choice of choosing is not unique, and now for any  𝑢 ∈ 𝐶2𝑘 Ω   𝑎𝑛𝑑 ∅ ∈ 𝐷 Ω , 

we get 

 𝐿 𝑥, 𝐷 𝑢∅𝑑𝑥 =    𝐷𝛼𝑢 𝑎𝛼
.

Ω
∅𝑑𝑥 = 𝛼 ≤2𝑘

.

Ω
   𝐷𝜎𝛼 +𝛾𝛼 𝑢 𝑎 𝜎𝛼 +𝛾𝛼  

.

Ω
∅𝑑𝑥 𝛼 ≤2𝑘   

⟹  𝐿 𝑥, 𝐷 𝑢∅𝑑𝑥
.

Ω
=   𝐷𝜎𝛼  𝐷𝛾𝛼 𝑢 𝑎 𝜎𝛼 +𝛾𝛼  

.

Ω
∅𝑑𝑥 𝛼 ≤2𝑘  , using integration by parts we get 

⟹  𝐿 𝑥, 𝐷 𝑢∅𝑑𝑥
.

Ω
=   −1  𝜎𝛼    𝐷𝛾𝛼 𝑢 𝐷𝜎𝛼  𝑎 𝜎𝛼 +𝛾𝛼  ∅ 

.

Ω
𝑑𝑥 𝛼 ≤2𝑘   

⟹  𝐿 𝑥, 𝐷 𝑢∅𝑑𝑥
.

Ω
=   −1  𝜎𝛼    𝐷𝛾𝛼 𝑢   𝜎𝛼

𝜌
 𝐷𝜎𝛼−𝜌

𝜌≤𝜎𝛼
 𝑎 𝜎𝛼 +𝛾𝛼   𝐷

𝜌∅
.

Ω
𝑑𝑥 𝛼 ≤2𝑘   



  International Journal of Advanced Research in  ISSN: 2278-6252 

 Engineering and Applied Sciences  Impact Factor: 7.358 
 

Vol. 6 | No. 3 | March 2017 www.garph.co.uk IJAREAS | 8 
 

⟹  𝐿 𝑥, 𝐷 𝑢∅𝑑𝑥
.

Ω
=

  −1  𝜎𝛼  + 𝜌   𝐷𝜌  𝜎𝛼
𝜌

   𝐷𝜎𝛼−𝜌𝑎 𝜎𝛼 +𝛾𝛼  𝐷
𝛾𝛼 𝑢 𝜌≤𝜎𝛼

∅
.

Ω
𝑑𝑥 𝛼 ≤2𝑘 ,𝜌≤𝜎𝛼

  

⟹  𝐿 𝑥, 𝐷 𝑢∅𝑑𝑥
.

Ω
=   −1  𝜎 𝐷𝜎  𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 ∅𝑑𝑥0≤ 𝜎 , 𝛾 ≤𝑘   

Note that the last equality is a definition holds ∀ ∅ ∈ 𝐷 Ω , and hence completes the proof 

1. Existence and Uniqueness of solution of Dirichlet Problem 

2. The Dirichlet Problem – Types of Solution 

Definition for Classical Solution: 
[7], [6], [9] 

Let  Ω ⊂ ℝ𝑛 , it is a bounded domain and suppose  𝑓 ∈ 𝐶𝑏 Ω , it is given. A function 

𝑢 ∈ 𝐶𝑏
2𝑘 Ω ∩ 𝐹𝑏

2𝑘−1 Ω  , it is a classical solution of the Dirichlet problem 
[2], [3], [4], [15] 

  If  𝐿 𝑥, 𝐷 𝑢 =   −1  𝜎 𝐷𝜎 𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 0≤ 𝜎 , 𝛾 ≤𝑘 = 𝑓  𝑖𝑛  Ω and   (2.1) 

  𝐷𝛼𝑢 = 0  𝑓𝑜𝑟  𝛼 ≤ 𝑘 − 1  𝑖𝑛 𝜕        (2.2) 

One of the most important ideas of the Modern Analysis is that we want to guarantee the 

existence of solution to a problem; it is usually easier to do so in a “Bigger” space of 

functions. This is clearly the case with the classical Dirichlet problem, although we might 

expect a solution to hall all of the smoothness suggested at first. The first step in relaxing 

the conditions on the solution is to state the problem in terms of Sobolev Spaces. 

Definition for Strong Solution: 

Let  Ω ⊂ ℝ𝑛 , it is a bounded domain and suppose  𝑓 ∈ 𝐿2 Ω , it is given. A function 

𝑢 ∈ 𝐻𝑘 Ω ∩ 𝐻0
𝑘 Ω  , it is a strong solution of the Dirichlet problem, if 

𝐿 𝑥, 𝐷 𝑢 =   −1  𝜎 𝐷𝜎  𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 0≤ 𝜎 , 𝛾 ≤𝑘 = 𝑓  𝑖𝑛  Ω    (2.3) 

Notes: 

1. We have relaxed the conditions not only on the solution  𝑢,but also on the data  𝑓, and 

the space 𝐿2 Ω , it is certainly the obvious space for 𝑓, once we have relaxed the 

conditions on 𝑢, so the additional generality will come along “For Free” (In fact, we 

will be able to weaken the conditions on 𝑓, each time we relax the conditions on the 

solution, as we shall see below) 

2. For classical solution, the differential equation (D.E. 2.1) is taken to hold in a point – 

wise sense. For strong solutions, (D.E. 2.3) is understood either in terms of equivalence 

classes (The right and left sides of the equation represent the same equivalence class of 

sequence in the 𝐿2 Ω  norm) or in a “almost everywhere (a. e) sense” 
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3. Instead of imposing boundary conditions explicitly as we did in the classical problem, 

we have incorporated then into the 𝐻0
𝑘 Ω , in the new problem 

4. By combining the previous observations we see that the new problem is indeed a 

generalization of the classical problem, i.e. any classical solution of the Dirichlet 

problem is also is a strong solution. 

We now take further steps in weakening the condition on solution of the Dirichlet problem: 

We state the problem in variational form. The first step is create a bilinear form from the 

differential operator 𝐿using integration by part 

Let us take  𝐿 𝑥, 𝐷 𝑢 =   −1  𝜎 𝐷𝜎  𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 0≤ 𝜎 , 𝛾 ≤𝑘 , and then 

 ∅𝐿𝑢
.

Ω
𝑑𝑥 =   −1  𝜎  ∅𝐷𝜎  𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 

.

Ω0≤ 𝜎 , 𝛾 ≤𝑘 𝑑𝑥     (2.4) 

By using integration by part, we get 

 ∅𝐿𝑢
.

Ω
𝑑𝑥 =   −1  𝜎  −1  𝛾   𝐷𝜎∅  𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 

.

Ω0≤ 𝜎 , 𝛾 ≤𝑘 𝑑𝑥  

⟹  ∅𝐿𝑢
.

Ω
𝑑𝑥 =   −1  𝜎 + 𝛾   𝐷𝜎∅  𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 

.

Ω0≤ 𝜎 , 𝛾 ≤𝑘 𝑑𝑥  

⟹  ∅𝐿𝑢
.

Ω
𝑑𝑥 =   −1 2 𝜎   𝐷𝜎∅  𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢 

.

Ω0≤ 𝜎 , 𝛾 ≤𝑘 =

   𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢  𝐷𝜎∅ 𝑑𝑥
.

Ω0≤ 𝜎 , 𝛾 ≤𝑘   

Define 𝐵 𝑣, 𝑢 =   𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢  𝐷𝜎𝑣 𝑑𝑥
.

Ω
 

To be bilinear form associated with the Elliptic Partial Differential Operator (EPDO) 𝐿, and 

also 𝐵 𝑣, 𝑢 , it is well defined for 𝑢 𝑎𝑛𝑑 𝑣 that are merely in 𝐻𝑘 Ω  

Definition for Weak Solution: 

Let  Ω ⊂ ℝ𝑛  it is a bounded domain and suppose suppose  𝑓 ∈ 𝐻−𝑘 Ω , it is given. A 

function 

𝑢 ∈ 𝐻0
𝑘 Ω  , it is a weak solution of the Dirichlet problem, if 

𝐵 𝑣, 𝑢 = 𝑓 𝑣    𝑣 ∈ 𝐻0
𝑘 Ω          (2.5) 

And also by (2.4) (For 𝑣 ∈ 𝐻0
𝑘 Ω  in place of ∅ ∈ 𝐷 Ω ), we conclude that any strong 

solution of the Dirichlet problem is automatically a weak solution. However, since we require 

so much less smoothness of weak solutions than strong ones, it will be far easier to show that 

if  Ω, 𝑓, and the coefficients  𝑎𝜎𝛾 , they are sufficiently “Nice” the weak solution is in fact, a 

strong solution or a classical solution. 

The Lax – Milgram Lemma
: [10], [13] 

Let 𝐻, it is a Hilbert space and let  𝐵: 𝐻 × 𝐻 ⟶ ℝ, it is a bilinear mapping and supposes that 

there exists a positive constants  𝑐1 𝑎𝑛𝑑 𝑐2 such that 
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   𝐵 𝑥, 𝑦  ≤ 𝑐1 𝑥 𝐻 𝑦 𝐻 , ∀  𝑥, 𝑦 ∈ 𝐻      (2.6) 

And 𝐵 𝑥, 𝑥 ≥ 𝑐2 𝑥 𝐻
2   ∀  𝑥 ∈ 𝐻       (2.7) 

Then, ∀  𝑓 ∈ 𝐻∗ and there exists a unique 𝑦 ∈ 𝐻 such that 

𝐵 𝑥, 𝑦 = 𝑓 𝑥 ,  ∀  𝑥 ∈ 𝐻        (2.8) 

Furthermore, there exists a constant 𝐶 , independent of 𝑓, such that   𝑦 𝐻 ≤ 𝐶 𝑓 𝐻∗ 

Note: 

A mapping 𝐵, satisfying *2.7) for some  𝑐2 > 0, it is called coercive 

We now prove the basic energy or coercivity estimate for the elliptic Dirichlet problem. 

Lemma – 5: 

Let 𝑓, 𝑔 ∈ 𝑆 ℝ𝑛 , and then   𝑓, 𝑔 =  𝑓 , 𝑔    

Proof: 

Since   𝑓, 𝑔 =  𝑓 𝑥 
.

ℝ𝑛 𝑔 𝑥 𝑑𝑥 =  𝑓 𝑥 
.

ℝ𝑛  𝑔 𝜉  𝑒𝑖𝜉𝑥 𝑑𝑥𝑑𝜉
.

ℝ𝑛 =

 𝑔  𝜉  𝑓 𝑥 𝑒−𝑖𝜉𝑥 𝑑𝑥
.

ℝ𝑛 𝑑𝜉
.

ℝ𝑛  ⟹  𝑓, 𝑔 =  𝑓 𝑥  .

ℝ𝑛 𝑔 𝜉  𝑑𝜉 =  𝑓 , 𝑔   , and hence completes 

the proof 

Lemma – 6: 

𝐿2 ℝ𝑛 , it is a Hilbert space with inner product  𝑓, 𝑔 =  𝑓𝑔
.

Ω
 

Proof: 

By the lemma – 5 it is obviously true 

Garding’s Inequality: 
[4], [5], [10] 

Let Ω it is a bounded domain with the  𝐾 extension property. Let  𝐿 𝑥, 𝐷 , it is linear partial 

differential operator in divergence form of order  2𝑘  such that for some 𝚯>0, and then the 

uniform ellipticity condition holds. Also supposes that 

𝑎𝜎𝛾 ∈ 𝐶𝑏 Ω , ∀   𝜎 =  𝛾 = 𝑘, and       (2.9) 

𝑎𝜎𝛾 ∈ 𝐿∞ Ω , ∀   𝜎 ,  𝛾 ≤ 𝑘         (2.10) 

Then there exists constants  𝑐3  𝑎𝑛𝑑 𝜆𝐺 ≥ 0, such that 

𝐵 𝑢, 𝑢 + 𝜆𝐺 𝑢 
𝐿2 Ω 
2 ≥ 𝑐3 𝑢 

𝐻𝑘 Ω 
2 , ∀  𝑢 ∈ 𝐻0

𝑘 Ω       (2.11) 

This inequality we can prove easily by using Holder’s inequality (For the complete proof see 

[9]
)  

Remarks: 

In the proof of Garding’s Inequality: we have the following results 
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1. When  𝑢 ∈ 𝐻0
𝑘 Ω , the results of Garding’s inequality 𝐵 𝑢, 𝑢 , it is splitting into 

principal part and lower order terms, i.e. 𝐵 𝑥, 𝑥 = 𝐼1 + 𝐼2, where 

𝐼1 =    𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢  𝐷𝜎𝑢 𝑑𝑥
.

Ω 𝜎 = 𝛾 =𝑘 ;  𝐼2 =

   𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢  𝐷𝜎𝑢 𝑑𝑥
.

Ω0≤ 𝜎 , 𝛾 ≤𝑘 , 𝜎 + 𝛾 ≤2𝑘   

2. Let  𝐵 𝑥0, 𝛿 , for some 𝑥0 > 0 and sufficiently small and then  𝐼1 𝑤𝑒𝑛 𝑢 ∈ 𝐻0
𝑘 Ω  , 

we have 

 𝐼1 = 𝐼11 + 𝐼12 , where 

𝐼11 =    𝑎𝜎𝛾  𝑥0 𝐷𝛾𝑢  𝐷𝜎𝑢 𝑑𝑥 
.

ℝ𝑛 𝜎 = 𝛾 =𝑘  , and also 

𝐼12 =    𝑎𝜎𝛾  𝑥 𝑎𝜎𝛾  𝑥0 − 𝐷𝛾𝑢  𝐷𝜎𝑢 𝑑𝑥
.

ℝ𝑛 𝜎 = 𝛾 =𝑘   

3. Continue with the estimate of  𝐼1, in the general case 𝑤𝑒𝑛 𝑢 ∈ 𝐻0
𝑘 Ω , we use the 

partition of unity, so that by covering  Ω with the finite collection of balls: 

𝐵𝑖 = 𝐵 𝑥, 𝛿𝑖   𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑚  𝑤𝑖𝑡 𝑥𝑖 ∈ Ω𝑎𝑛𝑑 𝛿𝑖 > 0  

From the remarks, we conclude that when  𝜓𝑖 , it is the partition of unity on Ω subordinate to 

the covering 𝐵𝑖  and then the set  𝜙𝑖 𝑥 =  
𝜙𝑖

2

 𝜓𝑗
2𝑚

𝑗 =1

 

1

2
, in this situation we have 

a. 0 ≤ 𝜙𝑖 𝑥 ≤ 1 

b. 𝜙𝑖 ∈ 𝐶∞ 𝐵𝑖 ∩ Ω  

c.  𝜙𝑖
2𝑚

𝑖=1 = 1  ∀  𝑥 ∈ Ω, and 

d. 𝑢𝑖 = 𝑢𝜙𝑖 ∈ 𝐻0
𝑘 𝐵𝑖  

Garding’s inequality is easily verified for second order PDE 
[14]

 i.e. in this case 

where  𝐿 𝑥, 𝐷 , it is the second order differential operator of the form 

𝐿 𝑥, 𝐷 𝑢 =  
𝜕

𝜕𝑥𝑖

𝑛
𝑖 ,𝑗 𝑎𝑖𝑗  𝑥 

𝜕𝑢

𝜕𝑥𝑗
+  

𝜕

𝜕𝑥𝑖

𝑛
𝑖=1 𝑏𝑖 𝑥 + 𝑐 𝑥 𝑢     (2.12) 

With the corresponding bilinear form 

𝐵 𝑣, 𝑢 = −   𝑎𝑖𝑗  𝑥 
.

Ω
𝑛
𝑖 ,𝑗 𝑢𝑥𝑖

𝑣𝑥𝑗
𝑑𝑥 +   𝑏𝑖 𝑥 𝑛

𝑖=1
.

Ω
𝑢𝑥𝑖

𝑣𝑑𝑥 +  𝑐 𝑥 
.

Ω
𝑢𝑣𝑑𝑥  (2.13) 

In this case we do not need to use either Fourier transforms or the partition of unity 

technique, and the proof can be carried out under weaker hypotheses on the higher order 

coefficients. 

Theorem: 

Let  Ω it is a bounded domain and let 𝐿 𝑥, 𝐷 , it is the second order differential operator in 

divergence form of the formed described in (2.12) such that for 𝚯>0, the uniform ellipticity 
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condition holds. Also supposes that  𝑎𝑖𝑗 , 𝑏𝑘 ∈ 𝐿∞ Ω , 𝑓𝑜𝑟 𝑖, 𝑗 = 1, … , 𝑛 𝑎𝑛𝑑 𝑘 = 0, … , 𝑛, and 

then there exists constants  𝑐3 𝑎𝑛𝑑 𝜏𝐺 ≥ 0, such that 

𝐵 𝑣, 𝑢 + 𝜏𝐺 𝑢 
𝐿2 Ω 
2 ≥ 𝑐3 𝑢 

𝐻1 Ω 
2  𝑤𝑒𝑟𝑒 𝐵, it is defined in (2.13) 

Proof: 

By using uniform ellipticity condition and Holder’s inequality we get 

𝐵 𝑢, 𝑢 = −   𝑎𝑖𝑗  𝑥 
.

Ω
𝑛
𝑖 ,𝑗 𝑢𝑥𝑖

𝑢𝑥𝑗
𝑑𝑥 +   𝑏𝑖 𝑥 𝑛

𝑖=1
.

Ω
𝑢𝑥𝑖

𝑢𝑑𝑥 +  𝑐 𝑥 
.

Ω
𝑢2𝑑𝑥  

To be bilinear form associated with elliptic partial differential operator 𝐿, as in (2.13) we 

have 

𝐵 𝑢, 𝑢 ≥ 𝚯  ∇𝑢 2𝑑𝑥 +   𝑏𝑖 𝑥 𝑛
𝑖=1

.

Ω
𝑢𝑥𝑖

𝑢𝑑𝑥 +  𝑐 𝑥 
.

Ω
𝑢2𝑑𝑥

.

Ω
 

⟹ 𝐵 𝑢, 𝑢 ≥ 𝚯  ∇𝑢 2𝑑𝑥 −   𝑏𝑖 𝑥 𝑢𝑥𝑖
𝑢 

.

Ω
𝑑𝑥 −   𝑐 𝑥 𝑢2 

.

Ω
𝑑𝑥

.

Ω
 

⟹ 𝐵 𝑢, 𝑢 ≥ 𝚯  ∇𝑢 2𝑑𝑥 −   𝑏𝑖 𝑥  𝐿∞  Ω 
𝑛
𝑖=1   𝑢𝑥𝑖

𝑢 
.

Ω
𝑑𝑥 −

.

Ω
 𝑐 𝑥  𝐿∞  Ω  𝑢2.

Ω
𝑑𝑥 

⟹ 𝐵 𝑢, 𝑢 ≥

  ∇𝑢 2𝑑𝑥 −  𝑏1 𝑥  𝐿∞  Ω    𝑢𝑥1
𝑢 

.

Ω
𝑑𝑥 + ⋯ +  𝑏𝑛 𝑥  𝐿∞  Ω  −

.

Ω
  𝑢𝑥𝑛

𝑢 
.

Ω
𝑑𝑥 −

 𝑐 𝑥  𝐿∞  Ω   𝑢 2.

Ω
𝑑𝑥  

Choose  max 𝑏𝑖 𝑥  𝐿∞  Ω , we get 

𝐵 𝑢, 𝑢 ≥ 𝚯  ∇𝑢 2𝑑𝑥 − max 𝑏𝑖 𝑥  𝐿∞  Ω    𝑢𝑥𝑖
𝑢 

.

Ω
𝑑𝑥𝑛

𝑖=1 −  𝑐 𝑥  𝐿∞  Ω   𝑢 2.

Ω
𝑑𝑥

.

Ω
 

⟹ 𝐵 𝑢, 𝑢 ≥ Θ   ∇𝑢 2𝑑𝑥 − max 𝑏𝑖 𝑥  𝐿∞  Ω    𝑢𝑥𝑖
  𝑢 

.

Ω
𝑑𝑥𝑛

𝑖=1 −  𝑐 𝑥  𝐿∞  Ω   𝑢 2.

Ω
𝑑𝑥

.

Ω
  

⟹ 𝐵 𝑢, 𝑢 ≥ Θ   ∇𝑢 2𝑑𝑥 − max 𝑏𝑖 𝑥  𝐿∞  Ω    ∇𝑢  𝑢 
.

Ω
𝑑𝑥𝑛

𝑖=1 −  𝑐 𝑥  𝐿∞  Ω   𝑢 2.

Ω
𝑑𝑥

.

Ω
  

Use (2.12), and Poincare’s inequality, we get 

⟹ 𝐵 𝑢, 𝑢 ≥

Θ   ∇𝑢 2𝑑𝑥 − max 𝑏𝑖 𝑥  𝐿∞  Ω   𝜀 ∇𝑢 2 +
1

4𝜀
 𝑢 2 𝑑𝑥

.

Ω
−  𝑐 𝑥  𝐿∞  Ω   𝑢 2.

Ω
𝑑𝑥

.

Ω
   

⟹ 𝐵 𝑢, 𝑢 ≥ Θ   ∇𝑢 2𝑑𝑥 − 𝜀max 𝑏𝑖 𝑥  𝐿∞  Ω    ∇𝑢 2 −
max  𝑏𝑖 𝑥  

𝐿∞  Ω 

4𝜀
  𝑢 2𝑑𝑥

.

Ω
 𝑑𝑥

.

Ω
−

.

Ω

𝑐𝑥𝐿∞ΩΩ.𝑢2𝑑𝑥   

Take  𝜏𝐺 =
max  𝑏𝑖 𝑥  

𝐿∞  Ω 

4𝜀
  𝑎𝑛𝑑 

Θ

2
= 𝜀max 𝑏𝑖 𝑥  𝐿∞  Ω , substitute in as above inequality we 

get 

⟹ 𝐵 𝑢, 𝑢 ≥  Θ −
Θ

2
    ∇𝑢 2𝑑𝑥 −  𝑐3 + 𝑐2  𝑢 2   𝑢 2.

Ω
𝑑𝑥

.

Ω
 (By lax Milgram inequality 

and given 𝑐3) 

Since  Θ −
Θ

2
    ∇𝑢 2𝑑𝑥 −  𝑐3 + 𝑐2  𝑢 2   𝑢 2.

Ω
𝑑𝑥

.

Ω
=

Θ

2
  ∇𝑢 2𝑑𝑥

.

Ω
− 𝜏𝐺 𝑢 2

2 

⟹ 𝐵 𝑢, 𝑢 ≥
Θ

2
  ∇𝑢 2𝑑𝑥

.

Ω
− 𝜏𝐺 𝑢 2

2 =
Θ

2
  ∇𝑢 2

2 − 𝜏𝐺 𝑢 2
2 
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Again use Poincare’s inequality we get 

⟹ 𝐵 𝑢, 𝑢 ≥ 𝑐3 𝑢 1,2
2 − 𝜏𝐺 𝑢 2

2 , and hence completes the proof 

2.4 Existence of Weak Solutions 

In this stage, we ready to prove our basic existence result for weak solutions 

 

Theorem: 

Let 𝐿 𝑥, 𝐷 , it is the linear partial differential operator in divergence form of order  2𝑘, 

satisfying the hypothesis of Garding’s Inequality and then there exists 𝜏𝐺 ≥ 0 such that, for 

any 

𝜏 ≥ 𝜏𝐺   𝑎𝑛𝑑 𝑓 ∈ 𝐻−𝑘 Ω , the Dirichlet problem for the operator 

𝐿  𝑥, 𝐷 = 𝐿 𝑥, 𝐷 + 𝜏          (2.14) 

It has a unique weak solution  𝑢 ∈ 𝐻0
𝑘 Ω . Furthermore, this solution satisfies 

 𝑢 𝑘 ,2 ≤ 𝐶 𝑓 −𝑘 ,2          (2.15) 

Proof: 

By Garding’s Inequality, there exists  𝜏𝐺 ≥ 0, such that the elementary inequality 

𝑎𝑏 ≤ 𝜀𝑎2 +
1

4𝜀
𝑏2  𝑤𝑒𝑟𝑒 𝑎, 𝑏 > 0 𝑎𝑛𝑑 𝜀 , it is too small 

Since  𝜏 ≥ 𝜏𝐺  , and also  𝐵  𝑢, 𝑣 = 𝐵 𝑢, 𝑣 + 𝜏  𝑢, 𝑣 𝐿2 Ω     (2.16) 

Equation (2.16) is a bilinear form associated with the operator  𝐿  

To prove that  𝐵 , satisfies the hypotheses of Lax – Milgram lemma 

Let  𝐻 = 𝐻0
1 Ω   𝑎𝑛𝑑 𝑢, 𝑣 ∈ 𝐻, and then 

 𝐵  𝑢, 𝑣  =  𝐵 𝑢, 𝑢 + 𝜏  𝑢, 𝑣  ≤  𝐵 𝑢, 𝑣  +  𝜏   𝑢, 𝑣   

Since 𝐵 𝑢, 𝑣  +  𝜏   𝑢, 𝑣 =     𝑎𝜎𝛾  𝑥 𝐷𝛾𝑢𝐷𝜎𝑣 𝑑𝑥
.

Ω0≤ 𝜎 , 𝛾 ≤𝑘  +  𝜏   𝑢, 𝑣   

⟹  𝐵 𝑢, 𝑣  +  𝜏   𝑢, 𝑣 ≤    𝑎𝜎𝛾  𝑥   𝐷𝛾𝑢  𝐷𝜎𝑣 𝑑𝑥
.

Ω0≤ 𝜎 , 𝛾 ≤𝑘 +  𝜏   𝑢, 𝑣   

⟹  𝐵 𝑢, 𝑣  +  𝜏   𝑢, 𝑣 ≤   max0≤ 𝜎 , 𝛾 ≤𝑘 sup 𝑎𝜎𝛾  𝑥   𝐷𝛾𝑢  𝐷𝜎𝑣 𝑑𝑥
.

Ω0≤ 𝜎 , 𝛾 ≤𝑘 +

 𝜏   𝑢, 𝑣   

⟹  𝐵 𝑢, 𝑣  +  𝜏   𝑢, 𝑣 ≤ max
0≤ 𝜎 , 𝛾 ≤𝑘

 𝑎𝜎𝛾  
𝐿∞  Ω 

   𝐷𝛾𝑢  𝐷𝜎𝑣 𝑑𝑥
.

Ω
+  𝜏   𝑢, 𝑣 0≤ 𝜎 , 𝛾 ≤𝑘   

⟹  𝐵 𝑢, 𝑣  +  𝜏   𝑢, 𝑣 ≤ 𝐶 𝑣 𝐻 𝑢 𝐻  

⟹ 𝐵  𝑢, 𝑣 ≥ 𝑐2 𝑥 𝐻
2 , ∀  𝑥 ∈ 𝐻  

Again by Garding’s inequality, we have 

𝐵  𝑢, 𝑢 = 𝜏  𝑢 2 + 𝐵 𝑢, 𝑣 ≥ 𝑐3 𝑢 𝑘
2   

Thus  𝐵  satisfies 𝐵 𝑥, 𝑦 = 𝑓 𝑥 , ∀  𝑥 ∈ 𝐻, i.e. 𝐵 𝑥, 𝑥 ≥ 𝑐2 𝑥 𝑘
2 , ∀  𝑥 ∈ 𝐻  
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Thus, Lax – Milgram lemma guarantee that  ∀  𝑓 ∈ 𝐻−𝑘 = 𝐻∗ , and then there exists a unique 

weak solution 𝑢 ∈ 𝐻 of the Dirichlet problem, and that the solution satisfies the 

estimate  𝑢 𝑘 ,2 ≤ 𝐶 𝑓 −𝑘 ,2 

Hence completes the proof. 

 

CONCLUSION 

In this research article we conclude that existence and uniqueness solution for a class of 

linear elliptic equations of Dirichlet problem in divergence form will be obtained in weak 

solution condition. 

FUTURE IMPLEMENTS 

From this article any one will do non linear uniqueness of weak and also strong solution for 

elliptic equations of higher order in divergence form of the Dirichlet problems 
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