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Abstract: Quantizing to pictures is the best method to introduce of features. Many variety 

models and equations are introduced for features of a picture that each model can consider 

unequal number of feature for a picture. We will represent some mathematical model to 

earn features of picture. At first texture description at a picture will be represented and then 

a method statistical matrix is called Co-occurrence matrix that is about using texture 

description classification algorithm will be represented. At the end, we will introduce feature 

extract algorithm of pictures. 
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1. INTRODUCTION 

In pattern recognition and in image processing, feature extraction is a special form 

of dimensionality reduction. When the input data to an algorithm is too large to be 

processed and it is suspected to be notoriously redundant (e.g. the same measurement in 

both feet and meters) then the input data will be transformed into a reduced 

representation set of features (also named features vector). Transforming the input data 

into the set of features is called feature extraction. If the features extracted are carefully 

chosen it is expected that the features set will extract the relevant information from the 

input data in order to perform the desired task using this reduced representation instead of 

the full size input. 

Feature extraction involves simplifying the amount of resources required to describe a large 

set of data accurately. When performing analysis of complex data one of the major 

problems stems from the number of variables involved. Analysis with a large number of 

variables generally requires a large amount of memory and computation power or 

classification algorithm which over fits the training sample and generalizes poorly to new 

samples. Feature extraction is a general term for methods of constructing combinations of 

the variables to get around these problems while still describing the data with sufficient 

accuracy. 

Best results are achieved when an expert constructs a set of application-dependent 

features. Nevertheless, if no such expert knowledge is available general dimensionality 

reduction techniques may help. These include: 

• Principal component analysis 

• Semi-definite embedding 

• Multifactor dimensionality reduction 

• Multi-linear subspace learning 

• Nonlinear dimensionality reduction 

• Is map 

• Kernel PCA 

• Multi-linear PCA 

• Latent semantic analysis 

• Partial least squares 

http://en.wikipedia.org/wiki/Pattern_recognition�
http://en.wikipedia.org/wiki/Image_processing�
http://en.wikipedia.org/wiki/Dimensionality_reduction�
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http://en.wikipedia.org/wiki/Overfitting�
http://en.wikipedia.org/wiki/Principal_component_analysis�
http://en.wikipedia.org/wiki/Semidefinite_embedding�
http://en.wikipedia.org/wiki/Multifactor_dimensionality_reduction�
http://en.wikipedia.org/wiki/Multilinear_subspace_learning�
http://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction�
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http://en.wikipedia.org/wiki/Kernel_PCA�
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• Independent component analysis 

• Auto encoder 

2- TEXTURE DESCRIPTION METHOD 

There exist a number of classification algorithms. Among the most widely used are 

parametric statistical classifiers derived from the Bayesian decision theory, nonparametric k-

nearest neighbor classifier, and various neural networks such as multilayer perceptions. See 

[1] for an introduction to statistical pattern recognition methods for an introduction to 

neural network methods.  

Given a texture description method, the performance of the method is often demonstrated 

using a texture classification experiment, which typically comprises of following steps 

(please note that not all steps may always be needed and the order of the steps may vary): 

a) Selection of image data: the image data and textures may be artificial or natural, 

possibly obtained in a real world application. Textures are probably the most widely 

used image data in texture analysis literature. Other well known data sets are VisTex 

and MeasTex textures. An important part of the selection of image data is the 

availability and quality of the ground truth associated with the images: do we really 

know that each image indeed represents the texture category it is supposed to 

represent according to the ground truth? 

b) Partitioning of the image data into sub images: image data are often limited in terms 

of the number of original source images available, hence in order to increase the 

amount of data the images are divided into sub images, either overlapped or 

disjoint, of a particular window size. 

c) Preprocessing of the (sub) images: the (sub) images may have different gray scale 

properties. In texture analysis the goal is to discriminate (sub) images based on 

texture, not on first or second order gray scale properties. Therefore (sub) images 

are often preprocessed to have uniform gray scale distribution, or equal first and 

second order statistics, by histogram equalization, for example. 

d) Partitioning of the (sub) images data into training and testing sets. In order to obtain 

an unbiased estimate of the performance of the texture classification procedure, 

training and testing sets should be independent. Different approaches can be used, 

including N-fold (the collection of (sub)images is divided into N disjoint sets, of which 

http://en.wikipedia.org/wiki/Independent_component_analysis�
http://en.wikipedia.org/wiki/Autoencoder�
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N-1 serve as training data in turn and the Nth set is used for testing), leave-one-out 

(each (sub)image is classified one by one so that other (sub)images serve as the 

training data) and holdout (the data is, preferably randomly, divided into separate 

training and testing sets, this can be repeated for a number of iterations for a more 

reliable estimate of performance). 

e) Selection of the classification algorithm. In addition to classification algorithm this 

may involve other selections such as metrics or similarity measures. Selection of 

classification algorithm can have great impact in the final performance of the texture 

classification procedure - no classifier can survive with poor features, but good 

features can be wasted with poor classifier design. 

f) Definition of the performance criterion: two basic alternatives are available, analysis 

of feature values and class assignments, of which the latter is used much more often. 

In the former the similarity of feature values between training and testing sets, or 

the separation of class clusters provided by the feature values, provides the basis for 

the quantitative performance analysis. In the case of class assignments the items in 

the testing set are classified, and the proportion of correctly (classification accuracy) 

or erroneously (classification error) classified items is used as performance criterion. 

It is obvious that the final outcome of a texture classification experiment depends on 

numerous factors, both in terms of the possible built-in parameters in the texture 

description algorithm and the various choices in the experimental setup. Results of texture 

classification experiments have always been suspect to dependence on individual choices in 

image acquisition, preprocessing, sampling etc., since no performance characterization has 

been established in the texture analysis literature. Haralick criticized this questionable 

status quo from the perspective of computer vision, which applies to texture analysis as 

well: "This is an awful state of affairs for the engineers whose job is to design and build 

image analysis or machine vision systems" [2]. Therefore, all experimental results should be 

considered to be applicable only to the reported setup. Fortunately, there is some recent 

work aimed at improving the situation with standardized test benches, for example the Tex 

framework for benchmarking texture classification algorithms [3]. Additionally, an increasing 

number of researchers are making the imagery and algorithms used in their work publicly 

available in the web. 
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3- GREY LEVEL CO-OCCURRENCE MATRIX (GLCM) 

The GLCM was introduced by Haralick et al. [1]. It is a second order statistical method which 

is reported to be able to characterize textures as an overall or average spatial relationship 

between grey tones in an image. Its development was inspired by the conjectured that 

second order probabilities were sufficient for human discrimination of texture.  

In general, GLCM could be computed as follows. First, an original texture image D is re-

quantized into an image G with reduced number of grey level, Ng.  A typical value of Ng is 16 

or 32. Then, GLCM is computed from G by scanning the intensity of each pixel and its 

neighbor, defined by displacement d and angle ø. A displacement, d could take a value of 

1,2,3,…n whereas an angle, ø is limited 0°, 45°, 90° and 135°.  

The GLCM P(i,j|d,ø) is a second order joint probability density function P of grey level pairs 

in the image for each element in co-occurrence matrix by dividing each element with Ng. 

Finally, scalar secondary features are extracted from this co-occurrence matrix. In this 

paper, 8 of most commonly used GLCM secondary features as defined were employed as 

defined in Eq. 1 to Eq.8.  All these features were employed as inputs to the neural network 

classifier. 
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To visualize the mechanism of GLCM, it is best described by example.  To make the example 

simple, consider a re-quantized image of four intensities as illustrated in Fig. 1(a).  Let’s 

assumed that the displacement d and angle, ø is 1 and 0°, respectively.  The co-occurrence 

matrix element P(1,2) is computed by counting all pixels in an image which intensity value of 

1 and its next neighboring pixel in a same row (d = 1 and ø = 0°) of intensity 2.  In this 

example, there are 2 of such cases, thus P(1,2) = 2 as shown in Fig.1(b).  Fig. 1(c) shows the 

GLCM in the form of probability estimates.  

1 1 2 3 4 
1 2 3 4 1 
2 2 3 3 3 
4 3 3 2 1 
3 3 3 4 4 

Figure 1(a). Image matrix 

 1 2 3 4 
1 1 2 0 0 
2 1 1 3 0 
3 0 1 5 3 
4 1 0 1 1 

Figure 1(b). Co-occurrence matrix 

 1 2 3 4 
1 0.0625 0.125 0 0 
2 0.0625 0.0625 0.1875 0 
3 0 0.0625 0.3125 0.1875 
4 0.0625 0 0.0625 0.0625 

Figure 1(c). Actual GLCM values. 

Curvelets as proposed by [4], constitute a relatively new family of non-separable wavelet 

bases that are designed to effectively represent seismic data with reflectors that generally 

tend to lie on piece-wise smooth curves.  This property makes Curvelets suitable to 

represent events in seismic whether these are located in shot records or time slices. For 

these types of signals, Curvelets obtain nearly optimal sparseness, because of (i) the rapid 

decay for the reconstruction error as a function of the largest coefficients; (ii) the ability to 

concentrate the signal’s energy in a limited number of coefficients; (iii) the ability to map 

noise and signal to different areas in the Curvelet domain.  So how do Curvelets obtain such 

a high non-linear approximation rate?  Without being all inclusive, the answer to this 

question lies in the fact that Curvelets are  
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• Multi-scale, i.e. they live in different dyadic corona (see for more detail [3] or the other 

contributions of the fist author to the proceedings of this conference) in the FK-

domain.  

• Multi-directional, i.e. they live on wedges within these coronas.  

• Anisotropic, i.e. they obey the following scaling law width length2.  

• Directional selective with .  

• Local both in (x, t)) and KF.  

• Almost orthogonal, they are tight frames with a moderate redundancy.  

Curvelets live in a wedges of the 2-D Fourier plane and become more directional selective 

and anisotropic for the higher frequencies.  They are localized in both the space (or (x, t)) 

and spatial KF-domains and have, as consequence of their partitioning, the tendency to align 

themselves with curves/wave fronts.  As such they can be more flexible then a 

representation yielded by high-resolution Radon because they are local and able to follow 

any piece-wise smooth curve [5]. 

 

Figure 2: calculation of Curvelet transform 
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4- SUPPORT VECTOR MACHINE 

A Support Vector Machine (SVM) is a discriminative classifier formally defined by a 

separating hyper plane. In other words, given labeled training data (supervised learning), the 

algorithm outputs an optimal hyper plane which categorizes new examples. 

In which sense is the hyper plane obtained optimal? The following simple problem: 

For a linearly separable set of 2D-points which belong to one of two classes, find a 

separating straight line. 

 
Figure 3: find a separating straight line by svm algorithm 

In the above picture you can see that there exist multiple lines that offer a solution to the 

problem. Is any of them better than the others? We can intuitively define a criterion to 

estimate the worth of the lines: 

A line is bad if it passes too close to the points because it will be noise sensitive and it will 

not generalize correctly. Therefore, our goal should be to find the line passing as far as 

possible from all points. 

Then, the operation of the SVM algorithm is based on finding the hyper plane that gives the 

largest minimum distance to the training examples. Twice, this distance receives the 

important name of margin within SVM’s theory. Therefore, the optimal separating hyper 

plane maximizes the margin of the training data [6]. 
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Figure 4: maximizing the margin of the training data 

Let’s introduce the notation used to define formally a hyper plane: 

 

Where  is known as the weight vector and  as the bias. The optimal hyper plane can be 

represented in an infinite number of different ways by scaling of  and . As a matter of 

convention, among all the possible representations of the hyper plane, the one chosen is 

 
Where  symbolizes the training examples closest to the hyper plane. In general, the 

training examples that are closest to the hyper plane are called support vectors. This 

representation is known as the canonical hyper plane. 

Now, we use the result of geometry that gives the distance between a point  and a hyper 

plane : 

 
In particular, for the canonical hyper plane, the numerator is equal to one and the distance 

to the support vectors is 

 
Recall that the margin introduced in the previous section, here denoted as , is twice the 

distance to the closest examples: 
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Finally, the problem of maximizing  is equivalent to the problem of minimizing a 

function  subject to some constraints. The constraints model the requirement for the 

hyper plane to classify correctly all the training examples . Formally, 

 
Where  represents each of the labels of the training examples. 

This is a problem of optimization that can be solved using Lagrange multipliers to obtain the 

weight vector  and the bias  of the optimal hyper plane. 

5. CONCLUSION 

This study has covered most of the methods for feature extraction in image processing. We 

need to know how we see, in some form, where we can find information and how to 

process data. More importantly, we need an image, or some form of spatial data. This is to 

be stored in a computer and processed by our new techniques. As it consists of data points 

stored in a computer, this data is sampled or discrete. We need to know some of the bounds 

on the sampling process, on how the image is formed.  
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