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SOME THRESHOLD THEOREMS FOR A PREY-PREDATOR MODEL WITH AN 

OPTIMAL HARVESTING OF THE PREDATOR 

B. Ravindra Reddy* 

 

Abstract: The present paper is devoted to derive some threshold theorems for a two species 

model comprising a prey and a predator.  Predator is provided with a limited resource of 

food in addition to the prey and the predator is harvested under optimal conditions.  In 

consonance with the principle of competitive exclusion Gauss, three theorems and ten 

lemmas has been derived. The model is characterized by a couple of first order non-linear 

ordinary differential equations. 
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1 INTRODUCTION 

Ecology relates to the study of living beings in relation to their living styles.  Research in the 

area of theoretical ecology was initiated by Lotka [1] and by Volterra [2].  Since then many 

mathematicians and ecologists contributed to the growth of this area of knowledge as 

reported in the treatises of Meyer [3], Kushing [4], Paul colinvaux [5], Kapur [6] etc.  The 

ecological interactions can be broadly classified as Prey – predation, Competition, 

Commensalim, Ammensalism, Neutralism and so on.  N.C.Srinivas [7] studied competitive 

eco-systems of two species and three species with limited and unlimited resources.  Later, 

Lakshminarayan and Pattabhi Ramacharyulu [8] studied some threshold theorems for a 

Prey-predator model harvesting.  Recently, the present author et al [9-12] investigated 

mutualism between two species.  

2 BASIC EQUATIONS 

The model equations for a two species prey-predator system are given by the following 

system of non-linear ordinary differential equations employing the following notation:    

  1N  and 2N are population of the prey and predator, 

  1a  and 2a  are the rates of natural growth of the prey and predator, 

  11  is rate of decrease of the prey due to insufficient food, 

  12  is rate of decrease of the prey due to successful attacks by the predator, 

  22  is rate of decrease of the predator due to insufficient food other than the prey, 

  21  is rate of increase of the predator due to successful attacks on the prey, 

  2q    is the catchability co-efficient of predator, 

   E   is the harvesting effort and 2q EN2 is the catch-rate function based on the CPUE 

(catch-per-unit-effort) hypothesis. 

Further both the variables 1N and 2N are non-negative and the model parameters     

1a , 2a , 11 , 12 , 21 , 22 , 2q , E and  2 2a q E are assumed to be non-negative constants. 

Employing the above terminology, the model equations for a two species prey-predator 

system is given by the following system of non-linear ordinary differential equations. 
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(i) Equation for the growth rate of prey species ( 1N ): 

   21
1 1 11 1 12 1 2

dN
a N N N N

dt
                                                              (2.1)                                                                                                 

(ii)Equation for the growth rate of predator species ( 2N ): 

      22
2 2 22 2 21 1 2 2 2

dN
a N N N N q EN

dt
      

  22
2 2 2 22 2 21 1 2

dN
a q E N N N N

dt
                                                                       (2.2)  

3 EQUILIBRIUM STATES 

The system under investigation has four equilibrium states:                                   

I. The fully washed out state with the equilibrium point 
21

0; 0N N          (3.1)          

II. The state in which, only the predator survives and the prey is washed out. 

            The equilibrium point is
1

0N  ; 2 2

2

22

( )a q E
N




                                            (3.2)                          

III.      The state in which, only the prey survives and the predator is washed out                  

           The equilibrium point is 1

1

11

a
N


 ;

2
0N                                                         (3.3)                                                                

IV.     The co-existent state (normal steady state). The equilibrium point is 

           1 22 2 2 12

1

11 22 12 21

( )a a q E
N

 

   

 



;      2 2 11 1 21

2

11 22 12 21

( )a q E a
N

 

   

 



                             (3.4) 

           This state would exit only when  1 22 2 2 12a a q E                                        

4    THRESHOLD THEOREMS 

In consonance with the principle of competitive exclusion, Gauss [13] three Threshold 

Theorems on the basic equations (2.1) & (2.2), one for each of the above three not-fully 

washed equilibrium states has been deduced.  The equations are: 

 
 

 2 2 21 1 1 2
1 1 1 2 2 2 2 1

1 2

,
a q E NdN a N dN

k N N k N N
dt k dt k

 


       (4.1) 

where 

 1
1

11

a
k


 ;

 2 2

2

22

a q E
k




 ; 12

1

1a


     and

 
21

2

2 2a q E


  


 

Theorem 1: Principle of Competitive Exclusion for Equilibrium State II:                                
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When 1 2k k , then every solution 1 2( ), ( )N t N t of (4.1) approaches the equilibrium 

solution
1 1N k , 2 0N   as t approaches infinity. In other words, if species 1 and 2 are 

nearly identical and the microcosm can support more members of species 1 than species 2, 

then species 2 will ultimately becomes extinct. 

Proof: The first step in proving this is to show that 1( )N t  and 2 ( )N t  can never become 

negative. To this end, observe that 

 

1 1

1  
1

1 1 1

 

(0)
( )

- t
(0) (0)

k N
N t

a
N k N e


 

 and 
2 ( ) 0N t                (4.2) 

 is a solution of (4.1) for any choice of 1(0)N . The orbit of this solution in the 1 2N N  plane 

is the point (0, 0) for 1(0) 0N  ; the line 1 10 N k  , 2 0N   for 1 10 (0)N k  ; the point 

1( ,0)k  for 1 1(0)N k ; and the line 1 1k N   , 2 0N   for 1 1(0)N k . Thus the 1N  axis, 

for 1 0N  , is the union of four distinct orbits of (4.1). Similarly, the 2N  axis, for 2 0N  , is 

the union of four distinct orbits of (4.1). This implies that 1 2( ), ( )N t N t  of (4.1) which starts in 

the first quadrant  1 2( ) 0, 0N t N   of the 1 2N N  plane must remain there for all future 

time. 

The second step is to split the first quadrant into regions in which both 1dN

dt
 and 2dN

dt
 have 

fixed signs. This is accomplished in the following manner. 

Let 1l and 2l  be the lines 

  1 1 1 2 0k N N                 (4.3) 

and  

 2 2 2 1 0k N N                  (4.4) 

These lines are non-parallel and non-intersecting in 1 2-N N  plane respectively (Ref.Fig.1). 

Observe that 1dN

dt
 is negative if 1 2( , )N N lies above 1l  and positive if 1 2( , )N N  lies below 1l . 

Similarly, 2dN

dt
 is negative if 1 2( , )N N  lies above 2l  and positive if 1 2( , )N N  lies below 2l . 

Thus the two lines 1l  and 2l  split the first quadrant of the 1 2N N  plane into three regions 
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in which both 1dN

dt
 and 2dN

dt
 have fixed signs. Both 1( )N t , 2 ( )N t  increases with time (along 

any solution of (4.1) in region I ; 1( )N t  increases and 2 ( )N t  decreases with time in 

region II ; and both 1( )N t  and 2 ( )N t  decrease with time in region III . This is illustrated in 

Fig.1. 

 

Fig.1 

Finally we require the following three lemmas for establishing the threshold theorems. 

Lemma 1: Any solution of 1( )N t , 2 ( )N t  of (4.1) which starts in region I at time 0t t  must 

leave this region I at some latter instant of time (Fig.1). 

Proof: Suppose that a solution 1( )N t , 2 ( )N t  of (4.1) remain in region I for all time 0t t . This 

implies that both 1( )N t  and 2 ( )N t  are monotonic increasing functions of time for 0t t , 

with 1( )N t  and 2 ( )N t  less than 2k . Consequently both 1( )N t  and 2 ( )N t  have limits ,  

respectively, as t approaches infinity. This, in turn, implies that ( , )   is an equilibrium point 

of (4.1). Now the only equilibrium points of (4.1) are (0, 0), ( 1k , 0), (0, 2k ) and 

( , )  obviously cannot equal any of these three points. We conclude, therefore, that any 

solution 1 2( ), ( )N t N t of (4.1) which starts in region I must leave this region at a later time. 

Lemma 2: Any solution of 1 2( ), ( )N t N t  of (4.1) which starts in region II at time 0t t  will 

remain in this region for all future time 0t t , and ultimately approach the equilibrium 

solution 1 1N k , 2 0N  (Fig.1). 
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Proof: Suppose that a solution 1 2( ), ( )N t N t  of (4.1) leaves region II at time *t t . Then 

either 1 ( *)
dN

t
dt

 or 2 ( *)
dN

t
dt

 is zero, since the only way a solution of (4.1) can leave region II 

is by crossing 1l  or 2l . Assume that 1 ( *) 0
dN

t
dt

 . Differentiation both sides of the first 

equation of (4.4.1) with respect to t and setting *t t  gives  

2

1 1 1 1 2

1

( *) ( *) ( *)d N t a N t dN t

dt k dt


               (4.5) 

This quantity is positive. Hence 1( )N t  has a minimum at *t t . However, this is impossible, 

since 1( )N t  is increasing whenever a solution of 1 2( ), ( )N t N t  of (4.4.1) is in region II.  

Similarly, if 2 ( *) 0
dN

t
dt

 , then 

 
 2

12 2 2 22

2

( *)( *)
( *)

a q E N td N t dN
t

dt k dt

 
               (4.6) 

This quantity is negative, implying that 2 ( )N t  has a maximum at *t t , but this is 

impossible, since 2 ( )N t  is decreasing whenever a solution 1 2( ), ( )N t N t  of (4.1) is in region II. 

The previous argument shows that any solution 1 2( ), ( )N t N t  of (4.1) which starts in region II 

at time 0t t  will remain in region II for all future time 0t t . This implies that 1( )N t  is 

monotonic increasing and 2 ( )N t is monotonic decreasing for 0t t ; with 1 1( )N t k  

and 2 2( )N t k . Consequently, both 1( )N t  and 2 ( )N t  have limits ,  respectively, as t 

approaches infinity. This in turn, implies that ( , )   is an equilibrium point of (4.1). Now 

( , )   obviously cannot equal (0,0) or 2(0, )k . Consequently, 1( , ) ( ,0)k    and this proves 

Lemma 2. 

Lemma 3: Any solution of 1 2( ), ( )N t N t  of (4.1) which starts in region III at time  0t t  and 

remains there for all future time must approach the equilibrium 

solution 1 1( )N t k , 2 ( ) 0N t   as t approaches infinity (Fig.1). 

Proof: If a solution 1 2( ), ( )N t N t  of (4.1) remains in region III for 0t t , then both 1( )N t  and 

2 ( )N t  are monotonic decreasing functions of time for 0t t , with 1 1( )N t k  and 2 2( )N t k , 

consequently, both 1( )N t  and 2 ( )N t  have limits  ,  respectively, as t approaches infinity. 
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This, in turn implies that ( , )   is an equilibrium point of (4.1). Now, ( , )   obviously cannot 

equal (0, 0) or 2(0, )k .  Consequently 1( , ) ( ,0)k   . 

Proof of Theorem: Lemmas 1 and 2 state that every solution ( 1 2( ), ( )N t N t ) of (4.1) which 

starts in region I or II at time 0t t  must approach the equilibrium solution 1 1N k , 2 0N   

as t approaches infinity. Similarly, Lemma 3 shows that every solution (
1 2( ), ( )N t N t ) of (4.1) 

which starts in region III at time 0t t  and remains there for all future time must also 

approach equilibrium solution 1 1N k , 2 0N  . Next, observe that any solution 

( 1 2( ), ( )N t N t ) of (4.1) which starts on 1l  or 2l  would soon enter region II. Finally, if a solution 

( 1 2( ), ( )N t N t  ) of (4.1) leaves region III, then it must crosses the line 1l  and immediately 

afterwards enters region II. Lemma 2 then forces the solution to approach the equilibrium 

solution 1 1N k , 2 0N  . This is illustrated in the Fig.2 

 

Fig.2 

Theorem 2: Principle of Competitive Exclusion for Equilibrium State III: 

1

1

11

a
N


 ;

2
0N   

When 1 2k k , then every solution 1 2( ), ( )N t N t of (4.1) approaches the equilibrium solution 

1 0N  , 22N k  as t approaches infinity. In other words, if species 1 and 2 are nearly 

identical and the microcosm can support more members of species 1 than species 2, then 

species 2 will ultimately becomes extinct. 

Proof: The first step in our proof is to show that 1( )N t  and 2 ( )N t  can never become 

negative. To this end, we observe that 
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1 0N   and 

 
 

2 2
2

2 2 2

 2 2

(0)
( )

t
(0) (0)

a q E

k N
N t

N k N e
 



 

              (4.7) 

 is a solution of (4.1) for any choice of 
2 (0)N . The orbit of this solution in the 1 2N N  plane 

is the point (0, 0) for 2 (0)N =0; the line 1 10 N k  , 1( 0)N   for 2 20 (0)N k  ; the point 

2(0, )k  for 2 2(0)N k ; and the line 2 2k N   , 1 0N   for 2 2(0)N k . Thus the 2N  axis, 

for 2 0N  , is the union of four distinct orbits of (4.1). Similarly, the 1N  axis, for 1 0N  , is 

the union of four distinct orbits of (4.1). This implies that 1 2( ), ( )N t N t  of (4.1) which starts in 

the first quadrant  1 2( ) 0, 0N t N   of the 1 2N N  plane must remain there for all future 

time. 

The second step in our proof is to split the first quadrant into regions in which both 1dN

dt
 

and 2dN

dt
 have fixed signs. This is accomplished in the following manner. 

Let 1l and 2l  be the lines  1 1 1 2 0k N N    and  2 2 2 1 0k N N    respectively. Observe 

that 1dN

dt
 is negative if 1 2( , )N N lies above 1l  and positive if 1 2( , )N N  lies below 1l . Similarly, 

2dN

dt
 is negative if 1 2( , )N N  lies above 2l  and positive if 1 2( , )N N  lies below 2l . Thus the two 

parallel lines 1l  and 2l  split the first quadrant of the 1 2N N  plane into three regions in 

which both 1dN

dt
 and 2dN

dt
 have fixed signs. Both 1 2( ), ( )N t N t increases with time along any 

solution of (4.1)  in region I ; 1( )N t  increases and 2 ( )N t  decreases with time in region II ; 

and both 1( )N t  and 2 ( )N t  decrease with time in region III (Ref. Fig. 3). We require the 

following three lemmas. 
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Fig.3 

Lemma 4: Any solution of 1( )N t , 2 ( )N t  of (4.1) which starts in region I at time 0t t  must 

leave this region I at some latter time. (Fig.3) 

Proof: Suppose that a solution 1( )N t , 2 ( )N t  of (4.1) remain in region I for all time 0t t . This 

implies that both 1( )N t  and 2 ( )N t  are monotonic increasing functions of time for 0t t , 

with 1( )N t  and 2 ( )N t  less than 2k . Consequently both 1( )N t  and 2 ( )N t  have limits ,  

respectively, as t approaches infinity. This, in turn, implies that ( , )   is an equilibrium point 

of (4.1). Now the only equilibrium points of (4.1) are (0, 0), ( 1k ,0), (0, 2k ) and obviously ( , )   

cannot equal any of these three points. We conclude, therefore, that any solution 

1 2( ), ( )N t N t of (4.1) which starts in region I must leave this region at a later time. 

Lemma 5: Any solution of 1 2( ), ( )N t N t  of (4.1) which starts in region II at time 0t t  will 

remain in this region for all future time 0t t , and ultimately approach the equilibrium 

solution 1 0N  , 2 2N k (Fig.3). 

Proof: Suppose that a solution 1 2( ), ( )N t N t  of (4.1) leaves region II at time *t t . Then 

either 1 ( *)
dN

t
dt

 or 2 ( *)
dN

t
dt

 is zero, since the only way a solution of (4.1) can leave region II 

is by crossing 1l  or 2l . Assume that 1 ( *) 0
dN

t
dt

 . Differentiation both sides of the first 

equation of (4.4.1) with respect to t and setting *t t  gives  

2

1 1 1 1 2

1

( *) ( *) ( *)d N t a N t dN t

dt k dt


                           (4.8) 
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This quantity is positive. Hence 1( )N t  has a minimum at *t t . However, this is impossible, 

since 1( )N t  is increasing whenever a solution of 
1 2( ), ( )N t N t  of (4.1) is in region II.  

Similarly, if 2 ( *) 0
dN

t
dt

 , then 

 
 2

12 2 2 22

2

( *)( *)
( *)

a q E N td N t dN
t

dt k dt

 
 .                                 (4.9) 

This quantity is negative, implying that 2 ( )N t  has a maximum at *t t , but this is 

impossible, since 2 ( )N t  is decreasing whenever a solution 1 2( ), ( )N t N t  of (4.1) is in region II. 

The previous argument shows that any solution 1 2( ), ( )N t N t  of (4.1) which starts in region II 

at time 0t t  will remain in region II for all future time 0t t . This implies that 1( )N t  is 

monotonic increasing and 2 ( )N t is monotonic decreasing for 0t t ; with 1 1( )N t k  

and 2 2( )N t k . Consequently, both 1( )N t  and 2 ( )N t  have limits ,  respectively, as t 

approaches infinity. This in turn, implies that ( , )   is an equilibrium point of (4.1). Now 

( , )   obviously cannot equal (0, 0) or 2(0, )k . Consequently, 2( , ) (0, )k    and this proves 

Lemma 5. 

Lemma 6: Any solution of 1 2( ), ( )N t N t  of .4.1) which starts in region III at time  0t t  and 

remains there for all future time must approach the equilibrium solution 1( ) 0N t  , 

2 2( )N t k  as t approaches infinity (Fig 3). 

Proof: If a solution 1 2( ), ( )N t N t  of (4.1)  remains in region III for 0t t , then both 1( )N t  and 

2 ( )N t  are monotonic decreasing functions of time for 0t t , with 1 1( )N t k  and 2 2( )N t k , 

consequently, both 1( )N t  and 2 ( )N t  have limits  ,  respectively, as t approaches infinity. 

This, in turn implies that ( , )   is an equilibrium point of (4.1). Now, ( , )   obviously cannot 

equal (0, 0) or ,1( 0)k .  Consequently 2( , ) (0, )k   . 

Proof of Theorem: Lemmas 4 and 5 state that every solution 1 2( ), ( )N t N t  of (4.1) which 

starts in region I or II at time 0t t  must approach the equilibrium solution 1 0N  , 2 2N k  

as t approaches infinity. Similarly, Lemma 6 shows that every solution 1 2( ), ( )N t N t  of (4.1) 

which starts in region III at time 0t t  and remains there for all future time must also 

approach equilibrium solution 1 0N  , 2 2N k . Next, observe that any solution 1 2( ), ( )N t N t  
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of (4.1) which starts on 1l  or 2l  must immediately afterwards enter region II. Finally, if a 

solution 
1 2( ), ( )N t N t  of (4.1) leaves region III, then it must cross the line 

1l  and immediately 

afterwards enter region II. Lemma 5 then forces the solution to approach the equilibrium 

solution 1 0N  , 2 2N k . This is illustrated in Fig.4. 

 

Fig.4 

Theorem 3: Principle of Competitive Exclusion for Equilibrium State IV: 

 1 22 2 2 12

1

11 22 12 21

( )a a q E
N

 

   

 



    ;  2 2 11 1 21

2

11 22 12 21

( )a q E a
N

 

   

 



 

When 1

2

1

k
k


  and 2

1

2

k
k


 , then every solution of 1 2( ), ( )N t N t of (4.1) approaches the 

equilibrium solution 11( )N t N ( 0 ) and 22 ( )N t N ( 0 ) as t approaches infinity. In other 

words, if species 1 and 2 are nearly identical and the microcosm can support both the 

members of species 1 and 2 depending up on the initial conditions. 

Proof: The first step in our proof is to show that 1( )N t  and 2 ( )N t can never become 

negative. To this end, observe that  

  1 22 2 2 12
1 1

11 22 12 21

( )
( )

a a q E
N t N

 

   

 
 


 

and  

 2 2 11 1 21
2 2

11 22 12 21

( )
( )

a q E a
N t N

 

   

 
 


 

is a solution of (4.1) for any choice of 1(0)N . The orbit of this solution in the 1 2N N plane is 

the point (0,0) for 1(0) 0N  ; the line 1 10 N k  , 2 0N   for 1 10 (0)N k  ; the point 

1( ,0)k  for 1 1(0)N k ; and the line 1 1k N   , 2 0N   for 1 1(0)N k .Thus the 1N axis, 
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for 1 0N   is the union of four distinct orbits of (4.1). Similarly the 2N axis, for 2 0N  , is the 

union of four distinct orbits of (4.1). This implies that all solutions 
1 2( ), ( )N t N t of (4.1) which 

start in the first quadrant  1 2( ) 0, 0N t N   of the 1 2N N plane must remain there for all 

future time. 

The second step in our proof is to split the first quadrant into regions in which both 1dN

dt
and 

2dN

dt
 have fixed signs. This is accomplished in the following manner. 

Let 
1l and

2l be the lines  1 1 1 2 0k N N    and  2 2 2 1 0k N N   respectively and the 

point of their intersection, is
1 2( , )N N . Observe that 1dN

dt
is negative if 1 2( , )N N  lies above 

the line 1l  and positive if 1 2( , )N N  lies below 1l . Similarly, 2dN

dt
 is negative if 1 2( , )N N lies 

above 2l  and positive if 1 2( , )N N lies below 2l . Thus the two lines 1l  and 2l  split the first 

quadrant of the 1 2N N plane into four regions in which both 

1dN

dt
 and 2dN

dt
 have fixed signs. 

1 2( ), ( )N t N t  both increase with time along any solution of (4.1)  in region I; 

1( )N t  increases and 2 ( )N t decreases with time in region II;  

1( )N t  decreases and 2 ( )N t increases with time in region III and both 1( )N t and 2 ( )N t  

decrease with time in region IV.  In this region both the prey predator compete with each 

other but do not flourish and at the same time do not get extinct as shown in Fig.5. 

 

Fig.5 
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Finally we require the following four lemmas. 

Lemma 7: Any solution of 1 2( ), ( )N t N t of (4.1) which starts in region I at time 0t t  will 

remain in this region for all future time 0t t , and ultimately approach the equilibrium 

solution 
1 1( )N t N ,

2 2( )N t N (Fig 5). 

Proof: Suppose that a solution 1 2( ), ( )N t N t  of (4.1) leaves region I at time *t t . Then 

either 1 ( *)
dN

t
dt

 or 2 ( *)
dN

t
dt

 is zero, since the only way a solution of (4.1) can leave region I is 

by crossing 1l  or 2l . Assume that 1 ( *) 0
dN

t
dt

 . Differentiation both sides of the first 

equation of (4.1) with respect to t and setting *t t  gives  

 
2

1 1 1 1 2

1

( *) ( *) ( *)d N t a N t dN t

dt k dt


  < 0                        (4.10)  

Hence 1( )N t  is monotonic increasing and it has maximum whenever a solution of 

1 2( ), ( )N t N t  of (4.1) is in region I.  

Similarly, if 2 ( *) 0
dN

t
dt

 , 

then  

      
2

12 2 2 2 2

2

( *) ( ) ( *)
( *)

d N t a q E N t dN
t

dt k dt

 
 < 0                    (4.11) 

implies that 2 ( )N t  is monotonic increasing and it has maximum whenever a solution 

1 2( ), ( )N t N t  of (4.1) is in region I. 

If a solution 1 2( ), ( )N t N t  of (4.1) remains in region I for 0t t , then both 1( )N t  and 2 ( )N t  

are monotonic increasing functions of time for 0t t , with 1 1( )N t k  and 2 2( )N t k , 

consequently, both 1( )N t  and 2 ( )N t  have limits  ,  respectively, as t approaches infinity. 

This, in turn implies that ( , )   is an equilibrium point of (4.1). Now, ( , )   obviously cannot 

equal (0,0); 1( ,0)k  or 2(0, )k .Consequently 
1 2

( , ) ( , )N N   . 

Lemma 8: Any solution of 1 2( ), ( )N t N t of (4.1) which starts in region II at time 0t t  will 

remain in this region for all future time 0t t , and ultimately approach the equilibrium 

solution 
1 1( )N t N ,

2 2( )N t N (Fig 5). 
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Proof: Suppose that a solution 1 2( ), ( )N t N t  of (4.1) leaves region II at time *t t . Then 

either 1( *)dN t

dt
 or 2 ( *)dN t

dt
 is zero, since the only way a solution of (4.1) can leave region II is 

by crossing 1l  or 2l . Assume that 1( *)dN t

dt
=0. Differentiation both sides of the first equation 

of (4.1) with respect to t and setting *t t  gives  

2

1 1 1 1 2

1

( *) ( *) ( *)d N t a N t dN t

dt k dt


                         (4.12) 

This quantity is positive. Hence 1( )N t  has a minimum at *t t . However, this is impossible, 

since 1( )N t  is increasing whenever a solution of 1 2( ), ( )N t N t  of (4.1) is in region II.  

Similarly, if 2 ( *)dN t

dt
= 0, 

then 
2

12 2 2 2 2

2

( *) ( ) ( *)
( *)

d N t a q E N t dN
t

dt k dt

 
             (4.13) 

This quantity is negative, implying that 2 ( )N t  has a maximum at *t t , but this is 

impossible, since 2 ( )N t  is decreasing whenever a solution 1 2( ), ( )N t N t  of (4.1) is in region II. 

The previous argument shows that any solution 1 2( ), ( )N t N t  of (4.1) which starts in region II 

at time 0t t  will remain in region II for all future time 0t t . This implies that 1( )N t  is 

monotonic increasing and 2 ( )N t is monotonic decreasing for 0t t ; with 1 1( )N t k  

and 2 2( )N t k . Consequently, both 1( )N t  and 2 ( )N t  have limits ,  respectively, as t 

approaches infinity. This in turn, implies that ( , )   is an equilibrium point of (4.1). Now 

( , )   obviously cannot equal (0,0); ( 10,k ) or 2(0, )k . Consequently, 
1 2

( , ) ( , )N N    and 

this proves Lemma 8. 

Lemma 9: Any solution of 1 2( ), ( )N t N t of (4.1) which starts in region III at time 0t t  will 

remain in this region for all future time 0t t , and ultimately approach the equilibrium 

solution 
1 1( )N t N ,

2 2( )N t N (Fig.5). 

Proof: Suppose that a solution 1 2( ), ( )N t N t  of (4.1) leaves region III at time *t t . Then 

either 1( *)dN t

dt
 or 2 ( *)dN t

dt
 is zero, since the only way a solution of (4.1) can leave region II is 
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by crossing 1l  or 2l . Assume that 1( *)dN t

dt
=0. Differentiation both sides of the first equation 

of (4.1) with respect to t and setting *t t  gives  

2

1 1 1 1 2

1

( *) ( *) ( *)d N t a N t dN t

dt k dt


                         (4.14) 

This quantity is negative. Hence 1( )N t  has a maximum at *t t . However, this is 

impossible, since 1( )N t  is decreasing whenever a solution of 
1 2( ), ( )N t N t  of (4.1) is in region 

II.  

Similarly, if 2 ( *)dN t

dt
=0, 

then  
2

12 2 2 2 2

2

( *) ( ) ( *)
( *)

d N t a q E N t dN
t

dt k dt

 
                                    (4.15) 

This quantity is positive, implying that 2 ( )N t  has a minimum at *t t , but this is impossible, 

since 2 ( )N t  is increasing whenever a solution 1 2( ), ( )N t N t  of (4.1) is in 

 region III. 

The previous argument shows that any solution 1 2( ), ( )N t N t  of (4.1) which starts in region 

III at time 0t t  will remain in region III for all future time 0t t . This implies that 1( )N t  is 

monotonic increasing and 2 ( )N t is monotonic decreasing for 0t t ; with 1 1( )N t k  

and 2 2( )N t k . Consequently, both 1( )N t  and 2 ( )N t  have limits ,  respectively, as t 

approaches infinity. This in turn, implies that ( , )   is an equilibrium point of (4.4.1). Now 

( , )   obviously cannot equal (0, 0); ( 10,k ) or 2(0, )k . Consequently, 
1 2

( , ) ( , )N N    and 

this proves Lemma 9. 

Lemma 10: Any solution of 1 2( ), ( )N t N t of (4.1) which starts in region VI at time 0t t  will 

remain in this region for all future time 0t t , and ultimately approach the equilibrium 

solution 
1 1( )N t N ,

2 2( )N t N (Fig 5). 

Proof: Suppose that a solution 1 2( ), ( )N t N t  of (4.1) leaves region VI at time *t t . Then 

either 1( *)dN t

dt
 or 2 ( *)dN t

dt
 is zero, since the only way a solution of (4.1) can leave region I is 
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by crossing 1l  or 2l . Assume that 1( *)dN t

dt
=0. Differentiation both sides of the first equation 

of (4.4.1) with respect to t and setting *t t  gives  

2

1 1 1 1 2

1

( *) ( *) ( *)d N t a N t dN t

dt k dt


                         (4.16)  

This quantity is positive. Hence 1( )N t  is monotonic decreasing and it has minimum 

whenever a solution of 
1 2( ), ( )N t N t  of (4.1) is in region VI.  

Similarly, if 2 ( *)dN t

dt
=0, 

then   
2

12 2 2 2 2

2

( *) ( ) ( *)
( *)

d N t a q E N t dN
t

dt k dt

 
                             (4.17) 

This quantity is positive, implying that 2 ( )N t  is monotonic decreasing and it has minimum 

whenever a solution 1 2( ), ( )N t N t  of (4.1) is in region VI. 

If a solution 1 2( ), ( )N t N t  of (4.1) remains in region VI for 0t t , then both 1( )N t  and 2 ( )N t  

are monotonic decreasing functions of time for 0t t , with 1 1( )N t k  and 2 2( )N t k , 

consequently, both 1( )N t  and 2 ( )N t  have limits  ,  respectively, as t approaches infinity. 

This, in turn implies that ( , )   is an equilibrium point of (4.1). Now, ( , )   obviously cannot 

equal (0, 0); 1( ,0)k  or 2(0, )k .  Consequently 
1 2

( , ) ( , )N N   . 

Proof of Theorem: Lemmas 7,8,9and 10 state that every solution 1 2( ), ( )N t N t  of (4.1) which 

starts in region I ,II III or VI at time 0t t  and remains there for all future time must also 

approach equilibrium solution 11( )N t N , 22 ( )N t N  as t approaches infinity. Next, 

observe that any solution 1 2( ), ( )N t N t  of (1) which starts on 1l  or 2l  must immediately 

afterwards enter regions I, II, III or VI. Finally the solution approaches the equilibrium 

solution
1 1( )N t N ,

2 2( )N t N .  This is illustrated in Fig. 6. 
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Fig.6 

REFERENCES 

[1]  Lotka A. J., Elements of Physical Biology, Williams & Wilking, Baltimore, (1925). 

[2] Volterra V., Leconssen La Theorie Mathematique De La Leitte Pou Lavie, Gauthier-

Villars, Paris, (1931). 

[3] Meyer W.J., Concepts of Mathematical Modeling Mc.Grawhill, (1985). 

[4] Kushing J.M., Integro-Differential Equations and Delay Models in Population 

Dynamics, Lecture Notes in Bio-Mathematics, Springer Verlag, 20, (1977). 

[5] Paul Colinvaux A., Ecology, John Wiley, New York, (1986). 

[6] Kapur J. N., Mathematical Modelling in Biology and Medicine, Affiliated East West, 

(1985).  

[7] Srinivas N. C., “Some Mathematical Aspects of Modeling in Bio-medical Sciences” 

Ph.D Thesis, Kakatiya University, (1991). 

[8] Lakshmi Narayan K. & Pattabhiramacharyulu. N. Ch., “ Some Threshold Theorems 

for a Prey-Predator Model with harvesting,” International J. of Math. Sci. & Engg. 

Appls. (IJMSEA), Vol.2 No.II (2008), pp179-192 . 

[9] Ravindra Reddy, “A Study on Mathematical Models of Ecological Mutualism 

between Two Interacting Species”, Ph.D., Thesis, O.U. (2008) 

[10]  Ravindra Reddy B, Srilatha R, Lakshmi Narayan K., and Pattabhiramachryulu N.Ch: 

A model of two mutually interacting species with Harvesting, Atti Della Fondazione 

Giorgio Ronchi, Anno LXVI, 2011 - N. 3, 317-331. 

[11]  Ravindra Reddy B: A Model of two mutually interacting Species with Mortality Rate 

for the Second Species, Advances in Applied Science Research, 2012, 3(2):757-764. 



  International Journal of Advanced Research in  

 Engineering and Applied Sciences  ISSN: 2278-6252 

 

Vol. 2 | No. 3 | March 2013 www.garph.co.uk IJAREAS | 22 
 

[12] Ravindra Reddy B, Lakshmi Narayan K, and Pattabhiramacharyulu N.Ch., On Global 

stability of two mutually interacting species with limited resources for both the 

species, Internatioonal Journal of Contemporary Mathematical Sciences, Vol.6, 

2011, no.9, 401-407. 

[13] Gauss G. F., The struggle for existence, Williams and Wilkins, Baltimore, 1934.  

 


