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Abstract:  In friction welding, the joints are formed in the solid state by utilizing the heat 

generated by friction. The objective of this study an obtaining friction welding of  super 

duplex stainless steel(UNS S32760) joint were investigated considering four process 

parameters: The process parameters such as friction pressure, upset pressure, burn off 

length and speed play the major roles in determining the strength of the joints. Optimizing 

the friction welding parameters in order to establish the weld quality. Similar specimens 

were joined using the laboratory model friction welding machine. The  processed  joints were 

tested for their shrinkage and strength related aspects. Acoustic emission emanated by the 

joints during tensile testing was acquired to assess the quality of the joints.  Also a method 

to decide near optimal settings of the process parameters using  In the present work, a 

design of experiment (DOE) technique, GENETIC ALGORITHM  and  artificial neural network 

(ANN)  is proposed minimize shrinkage  and maximize tensile strength The optimization 

procedure resulted in the creation of nondominated optimal points which gave an insight 

regarding the optimal operating conditions of the process. GA and ANN approach and 

compare the results obtained.  
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HIGHLIGHTS  

• Easy to understand, Modular, separate from application, Supports single-objective 

optimization, Good for noisy environment, We always get an answer and the answer 

gets better with time, Inherently parallel and easily distributed,  

• There are many ways to speed up and improve a GA‟s basic applications as 

knowledge about the problem domain is general, Easy to exploit for previous or 

alternate solutions, Flexible in forming building blocks for hybrid applications.  

• Tensile strength and shrinkage of friction welded super duplex stainless steel Joints 

had done by design of experiments.  

• The models indicate that burn off length has the highest significance total shrinkage 

followed by upset force and friction force. And friction force is a strong determinant 

in   changing tensile strength followed by upset force and burn off length.  

• The Artificial neural networks from the genetic algorithm based multi objective 

optimization can aid the process operator to fix the input control variables.  

• The selection of a point from the ANN will always be a trade-off between the Tensile 

strength and total shrinkage of the weld depending on the application.  

1. INTRODUCTION  

The friction welding is an efficient method of bonding, which has been successfully used in 

automotive and military industries and also in production of agricultural machinery and part 

elements [1]. The technical parameters, which determine the effect of technology used 

include: rotational speed, friction force, friction time, upsetting force and upsetting time. 

The rotational speed determines the rate of heating in the contact area. The friction force 

affects the rate of heating in the heat effect zone (SWC). The friction time determines the 

proper heating in bonding zone area and strength of connection. The force and time of 

upsetting decide on quality of the obtained metallic connection heated up to a plastic state 

of contact surfaces of the elements subjected to welding. Many scientists investigated the 

effect of welding parameters on the quality of spheroidal cast iron connections [2-5]. First of 

all, the authors optimized the welding parameters using conventional techniques, although 

the references on the selection and optimization of these parameters have been 

exceptionally poor. Friction welding is a solid state welding process in which the joining 

surface of the samples are heated to the desired temperature through frictional heat and 
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then a forging force is introduced to weld the parts [6-7]. Friction welding finds widespread 

industrial use as a mass production process for the joining of materials.  

Sahin et al. [8] carried out an analysis of the friction welding process in relation to the 

welding of copper and steel bars. The selection of optimum conditions for the friction 

welding of high speed steel to carbon steel[9]. Ananthapadmanaban et al. [10] have 

reported the experimental studies of mechanical property variation under different friction 

welding conditions for mild steel stainless steel joints. Sathiya et al. [11] investigated the 

effect of friction time on the fully plastically deformed region in the vicinity of the weld. 

Mumim [12] investigated the hardness variations and microstructure at the interfaces of 

steel welded joints. Super duplex stainless steels (SDSS) have been found to have a wide 

spread use in industries, such as oil and gas production, pulp manufacturing, and power 

plants due to their high corrosion resistance and superior mechanical characteristics, where 

typical working environments can contain high levels of chloride attack. Duplex stainless 

steels have higher strength than austenitic stainless steels, higher toughness than ferritic 

stainless steels, good weldability, and high resistance to different forms of corrosion in 

different aggressive environments [13-14]. These favorable properties arise from the 

coexistence of ferrite and austenite phases in equal amounts. Generally super duplex 

stainless steel has a pitting resistance equivalent number (PREN) greater than 40.  

PREN = %Cr + 3.3 (%Mo + %W) + 16%N (1)  

But a major concern with fusion welding of super duplex stainless steel is the formation of 

detrimental inter metallic phases at elevated temperatures. Sigma and chi phases form in 

super duplex stainless steels at elevated temperature and precipitate preferably in the 

ferrite. This will considerably affect the toughness of the welded joint [15].The formations of 

these phases are due to the high chromium and molybdenum content. Topolska et al. [16] 

have studied the effect of heat treatments and resulting changes in microstructure on 

mechanical properties, mainly impact toughness, of commercial 2205 duplex stainless steel 

and higher alloy super duplex 2507 grade. They suggested that high temperature service of 

duplex stainless steels should be avoided.  

Precipitations of secondary phases (mainly σ phase) strongly deteriorate mechanical 

properties of steels but some amounts of these phases could be acceptable in the 

microstructure depending upon the application of the steel. The above said problem can be 
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overcome by employing solid state welding process like friction welding. Friction welding 

process allows welding of several materials that are extremely difficult to fusion weld. 

Friction welding process parameters play a significant role in making good quality joints [17]. 

To produce a good quality joint it is important to set up proper welding process parameters. 

Therefore, identifying the suitable combinations of process input parameters to produce the 

desired output requires many experiments, making this process time consuming and costly 

[18]. So to avoid this problem, mathematical models can be built, which can adequately 

predict the relation between input process parameters and the responses. RSM [19] is 

widely used for this purpose. The problem becomes more complex when simultaneous 

optimization of two responses has to be done. This study focuses on simultaneous 

optimization of shrinkage and tensile strength. There have been many studies on screening 

experiments, modeling and optimization for weldingprocesses. Yousefieh et al. [20] have 

used a design of experiment (DOE) technique, the Taguchi method, to optimize the pulsed 

current gas tungsten arc welding (PCGTAW) parameters for the corrosion resistance of 

super duplex stainless steel (UNS S32760) welds. Sathiya et al. [21] have done the 

optimization of friction welding parameters using evolutionary computational techniques. 

The methods suggested were used to determine the welding process parameters by which 

the desired tensile strength and minimized metal loss were obtained in friction welding. 

They described how to obtain near optimal welding conditions over a wide search space by 

conducting relatively a smaller number of experiments. Paventhan et al. [22] have done the 

optimization of friction welding process parameters for joining carbon steel and stainless 

steel. They developed an empirical relationship to predict the tensile strength of friction 

welded AISI 1040 grade medium carbon steel and AISI 304 austenitic stainless steel, 

incorporating the process parameters namely friction force, forging force, friction time and 

forging time, which have great influence on strength of the joints. Abdullah et al. [24] have 

discussed the different approaches in multi objective optimization using GA. Application of 

genetic algorithms in optimization of welding parameters is a relatively new idea.[3] used 

the genetic algorithms in optimization of welding parameters with the Gas Metal Arc 

Welding method (GMAW) in order to obtain optimal geometry of the welded connections. 

The main aim of this work was determination of mechanical properties of connections 

welded by friction. For this purpose the simulated annealing was used as a statistical 
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method for searching of optimal welding parameters to get desirable mechanical properties 

of the connection. A neural network is a computational structure, consisting of a number of 

highly interconnected processing elements (or nodes), that produces a dynamic response to 

external input or stimuli [25].Neural networks were originally developed as approximations 

of the capabilities exhibited by biological neural systems. Much of the interest in neural 

networks arises from their ability to learn to recognize patterns in large data sets. This is 

accomplished by presenting the neural network with a series of examples of the conditions 

that the network is being trained to represent. The neural network then `learns' the 

governing relationships in the data set by adjusting the weights between its nodes. In 

essence, a neural network can be viewed as a function that maps input vectors to output 

vectors.   

 Accurate prediction of the values of critical quality parameters of a product during the 

production process is a key factor in the success of a manufacturing operation. Neural 

networks have been used successfully to predict parameter values of manufacturing process 

output. Cook and [26] collected particleboard process data throughout a manufacturing 

operation, along with the corresponding values of the strength parameters. They developed 

a radial basis function (RBF) neural-network model to predict the internal bond strength of 

particleboard, based on current process conditions. The process data included bulk density, 

temperatures, conveyor speed, blender and press conditions, and bonding treatment. The 

neural network output was the predicted value of IB. The average prediction error of the 

RBF neural-network model was 12.5%, which represented a significant improvement over 

previously developed neural-network models, as well as a statistical regression model. 

Neural-network technology was also applied to brown stock washer operations in a pulp 

and paper mill (Patrick, 1991). Forty-four variables were identified as possible parameters to 

include in the network training. The network was developed to maintain solids in the 

washing operation at a uniform level. Both the standard deviation and the coefficient of 

variation of solids uniformity showed an improvement of greater than 20% with the neural-

network controller. This improved control implies improved washing efficiency, resulting in 

quality and economic benefits. [26] developed a radial basis function (RBF) neural-network 

model of a critical process parameter in a pulping process. The RBF model provided a 30% 

increase in predictive accuracy over the mathematical model proposed by Masura (1993).  
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2. EXPERIMENTAL DESIGN BASED ON GA AND ANN  

The following independently controllable process parameters were identified to carry out 

the experiments: friction force (F), upset force (U), burn of length (B). Other parameters like 

rotational speed were kept as a constant. The working ranges of all selected parameters 

were fixed by conducting trial runs. This was carried out by varying one of the parameters 

while keeping the rest of them at constant values. The working range of each process 

parameter was decided upon by inspecting the weld for a smooth appearance without any 

visible defects. The upper and lower limits with different levels of the identified process 

parameters are given in Table 1.  

   Table 1 Process variables and its bounds  

All welding variables at the intermediate level (0) constitute the center points and the 

combinations of each of the welding variables at either their lowest (-1) level or highest (+1) 

level with the other two variables at the intermediate levels constitute the star points. Thus 

the 20 experimental runs allowed the estimation of the linear, quadratic and two way 

interactive effects of the process parameters.   

3. EXPERIMENTAL PROCEDURE  

A continuous drive friction welding machine (KUKA, Germany) with a maximum 150kN load 

was used for welding is shown in the fig1. The friction and forge pressures are in the range 

of 40-120 MPA and 125–175 MPA respectively. The spindle rotating speed was kept varying 

at 1000-2000 rpm and the welding was performed under the specified friction upset 

distance. Super duplex material (UNS S32760) specimens of size 16mm diameters were used 

as parent materials in this study. The chemical composition of the specimen material is 

presented in Table2. Similar austenitic stainless steel specimens were joined by friction 

welding process without any preheat. Friction joints are processed experimentally at 

randomly chosen parameters sets. For each parameter set, five joints were processed. 

Strength related properties of the joints were tested and the average data is presented. 

Theoretical optimization was carried out in order to maximize the tensile strength of the 

joint and to minimize the shrinkage by non-traditional optimization techniques. The process 

was considered here as multi-input and multi-output system. The objective function was 

formulated by design expert software. Multi objective optimization for maximizing the 
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tensile strength and minimizing the total shrinkage was carried out using genetic algorithm 

(GA).   

The welding process is a multi-input and multi-output process in which joints are closely 

associated with welding parameters. There have been many studies on screening 

experiments, modeling and optimization for welding processes. However, there are few 

techniques to move the experimental to region near optimal welding condition. The 

development of mathematical models for the selection of the process parameters and the 

prediction of bead geometry (bead width, bead height and penetration). Factorial design 

was employed as a guide for optimization of process parameters (Kim et al., 2003). 

Statistical experimental designs were used for optimizing process parameters. Three 

commonly employed dissimilar metal combinations are used and only fair agreement was 

obtained between predicted and actual strengths for joints [2].The selection of process 

parameters for obtaining optimal weld pool geometry in the tungsten inert gas welding of 

the stainless steel. The modified taguchi method is adopted to analyze the effect of each 

welding process parameters on the weld pool geometry, and to determine the process 

parameters with optimal weld pool geometry [27]. These are useful not only for selecting 

optimum process parameters but also for achieving the desired quality and process 

optimization [23].  

  [29] has carried out interesting studies on the use of genetic algorithm & tabu search for 

the cryptanalysis of mono alphabetic substitution cipher. Applied an attack on transposition 

cipher using genetic algorithm, tabu Search & simulated annealing. The efficiency of genetic 

algorithm attack on knapsack cipher can be improved with variation of initial entry 

parameters.   

Table 2 Base material chemical composition (weight in %).  

Fig. 1. Friction welding machine.  

Fig. 2. Friction welded samples.  

The welded samples are shown in Fig. 2.   

4. DEVELOPMENT OF MATHEMATICAL MODEL  

The response function representing tensile strength or shrinkage can be expressed as  

Y = f (F, U, B,N) (2)  
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where Y is the response or yield, F is the friction force, U is the Upset force and B is the burn 

off length. The mathematical models to establish the relationships between input and 

output parameters were developed using Design expert software (Statease Inc., USA) at a 

confidence level of 95%. Tensile strength(TS) and Shrinkage(S) were expressed as a non 

linear function of process parameters. Thus the second degree response surface can be 

expressed as TS=b0+ΣbiXi+ΣbiiXi2+ΣbijXiXj   (3)  

TS=b0+b1F+b2U+b3 B+b4 N+b12 FU+b13FB+ b14FN+b23UB+ b24UN+b34BN+b11F
2+b22U

2+b33B
2+b44N2 (4)  

where b0 is the average of responses and b1, b2 and b3, b12, b13,... , b44  are the response 

coefficients that depend on respective main and interaction effects of parameters.  

The value of the coefficient was calculated using Design expert Software [30]. The 

significance of each of the model terms was checked using p values. The values of p less 

than 0.05 indicate that the model terms are significant. The values greater than 0.05 

indicate that the model terms are not significant. The final mathematical models were 

constructed using only significant terms, and the developed final empirical relationship both 

in coded and actual factors are given below:  

Final Equations in Terms of Actual Factors:  

Tensile strength, TS = 892.87-0.68F+1.77U-1.2B-0.23N+       

0.003937FU+0.043FB+0.0002031FN+0.000465UN-0.001938BN-0.002152F2- 

0.009508U2+0.39B2+0.00005023N2             (7) 

Total shrinkage, S =-11.70-0.008402F+0.067U+1.34B+0.007892N-0.0006163FU-0.004250FB- 

0.00004125FN+0.00001180UN+0.0001613BN+0.0008228F2-0.000001634N2         (8)                      

Analysis of variance (ANOVA) technique [31] was used to check the adequacy of the 

developed empirical relationship. In this investigation, the desired level of confidence was 

considered to be95%. The results of basic ANOVA are presented in Table. 4 and 6.  

5. SINGLE OBJECTIVE OPTIMIZATION  

The traditional methods of optimization and search do not perform well over a broad 

spectrum of problem domains. Traditional techniques are not efficient when practical 

search space is too large. These algorithms are not robust. Traditional techniques such as 

geometric programming, dynamic programming and branch and bound techniques found 

hard to solve these problem and they are inclined to obtain a local optimal solution. Based 

on the merits of non-traditional optimization techniques over traditional techniques, this 
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paper has proposed to compare two non-traditional techniques (GA and ANN) in solving 

welding optimization problem. Simultaneous optimization of corrosion resistance and 

impact strength of friction welded joints fall into multi objective optimization. There are two 

different approaches for multi objective optimization [24]. The conventional way is to 

combine the two objectives into a single objective by weighted sum method or to move all 

but one objective to the constraint set. But a major concern in the former case is to choose 

the proper weight for each objective function. Both the methods results in a single solution 

rather than a set of solutions which can be evaluated for trade-offs. For this reason it is 

better to prefer a set of good solutions considering the multiple objectives  

5.1 Genetic algorithm  

The genetic algorithm is a method for solving both constrained and unconstrained 

optimization problems that is based on natural selection, the process that drives biological 

evolution [32]. The genetic algorithm repeatedly modifies a population of individual 

solutions. At each step, the genetic algorithm selects individuals at random from the current 

population to be parents and uses them to produce the children for the next generation. 

Over successive generations, the population "evolves" toward an optimal solution. Genetic 

algorithm can be applied to solve a variety of optimization problems that are not well suited 

for standard optimization algorithms, including problems in which the objective function is 

discontinuous, nondifferentiable, stochastic, or highly nonlinear.  

The genetic algorithm uses three main types of rules at each step to create the next 

generation from the current population. Selection rules select the individuals, called 

parents, which contribute to the population at the next generation. Crossover rules combine 

two parents to form children for the next generation. Mutation rules apply random changes 

to individual parents to form children.  

[start] Genetic random population of n chromosomes (suitable solutions for the problem)  

[Fitness] Evaluate the fitness f(x) of each chromosome x in the population  

[New population] Create a new population by repeating following steps until the New 

population is complete  

[Selection] select two parent chromosomes from a population according to their fitness                 

( the better fitness, the bigger chance to get selected).  
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[Crossover] With a crossover probability, cross over the parents to form new offspring                        

(children). If no crossover was performed, offspring is the exact copy of parents.  

[Mutation] With a mutation probability, mutate new offspring at each locus (position in 

chromosome)  

[Accepting] Place new offspring in the new population. 

[Replace] Use new generated population for a further sum of the algorithm. 

[Test] If the end condition is satisfied, stop, and return the best solution in current 

population. 

[Loop] Go to step2 for fitness evaluation. 

5.2 Optimization procedure  

Global optimization toolbox in MATLAB (R2010a) was used for generating the Pareto front 

for corrosion current and impact strength using “gamultiobj‟ function. The MATLAB 

function “gamultiobj‟ uses a controlled elitist genetic algorithm. An elitist GA always favors 

individuals with better fitness value (rank) [32]. A controlled elitist GA also favors individuals 

that can help increase the diversity of the population even if they have a lower fitness value.  

A MATLAB function was written using the developed GA model. Then this function was 

called as the input for creating a fitness function for the multi objective optimization 

problem. The impact strength to be maximized was negated in the fitness function since 

“gamultiobj‟ minimizes all the objectives. Experimental ranges were placed as bounds on 

the three input variables which are shown below: Bounds on Friction force 0.8 ≤ F ≤ 2.4  

• Bounds on Upset force  

2.5 ≤ U ≤ 3.5  

• Bounds on Burn off length  

2 ≤ B ≤ 6  

Bounds on Speed 1000≤ N ≤ 2000  

The following algorithm options were set.  

The weighted average change in the fitness function value over 100 generations was used as 

the criteria for stopping the algorithm.   

6. RESULTS AND DISCUSSION  

Investigations were carried out already to assess the relationship of 

microstructure/property relationships of similar and dissimilar joints of stainless steel by 
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various welding processes. The mathematical models furnished above have been used to 

predict the responses: corrosion current and impact strength. The effects of joining process 

parameters on metallurgical and mechanical properties of friction-welded super duplex 

material (UNS S32760) joints were investigated, and the correlation between the 

microstructure and the joint strength was carried out (T.Udaya kumar et al., 2013). Due to 

the difficulties associated with conventional way of optimization, we used evolutionary 

computational techniques to get maximized tensile strength and minimized shrinkage. The 

predicted values are in good agreement with the observed values for both the models. 

Based on the ANOVA results it is clear that burn off length has high significance on shrinkage 

followed by upset force and friction force. In the case of tensile strength, friction force has 

high significance followed by upset force and burn off length. The non-dominated optimal 

points, resulted from multi objective GA, gave an insight regarding the optimal operating 

conditions of the process.   

6.1 Direct effects of process parameters  

Individual effects of process parameters on each of the responses have been found from the 

developed mathematical models. The variation of the responses with respect to each of the 

three process parameters: friction force, upset force, burn off length and speed were 

plotted by keeping two parameters constant at their middle level and varying the third 

within the upper and lower bounds.   

7. CONCLUSION  

The following conclusions are achieved from this work. Investigations on the 

implementation of friction welding of similar super duplex material (UNS S32760) joints is 

carried out. The relationship between the input parameters such as friction pressure, upset 

pressure, burn off length and speed with the output parameters like tensile strength and 

shrinkage is modelled through design expert software. The developed model is suitably 

integrated with optimization algorithms. To optimize the welding parameters, GA and ANN 

techniques were employed. Among these two algorithms GA outperforms well for this 

friction welding process. For the optimized welding parameters of GA, the friction welding 

joints were processed. Joints exhibit higher quality. The good agreement between the 

theoretically predicted (GA) and experimentally obtained tensile strength and shrinkage 
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confirms the applicability of these evolutionary computational techniques for optimization 

of process parameters in the welding process.  

In this study, experimentation has been done to simulate the friction welding of SDSS. An 

effort has been made to model the tensile strength and shrinkage of the friction welded 

joints using response surface approach. The plots indicate that burn off length has a strong 

determinant in tensile strength current followed by upset force and friction force. And 

friction force is the significant parameter in changing tensile strength followed by upset 

force and burn off length.   

REFERENCES  

*1+“Friction welding” 1999: Brochure Manufacturing Technology, INC (MTI).  

[2] Murti  K.G.K. and Sundaresan S. 1983:Parameter optimization In friction welding 

dissimiliar material e. Met. Const., p. 331–335.  

[3] Markelj F. and Tusek J. 2001: Algorithmic optimization of parameters in tungsten 

inert gas welding of stainless steel sheet.  

[4] Meran C. 2006: Prediction of the optimized welding parameters for the joined brass 

plates using genetic algorithm. Materials&Design 27, p. 356–363.  

[5] Winiczenko R. 2008: Properties and structure of spheroidal chilled cast iron welded 

by friction. Annals of Warsaw University of Life Sciences – SGGW, No 52, p. 67–71.  

[6] Aws welding handbook. vol. 2. Miami: American Welding Society; 1991.  

[7] Asw handbook. vol. 6. Materials Park: ASM International; 1995.  

[8] Ahmet z.sahin,Bekir S.Yibas,M.Ahmed,J.Nickel. Analysis of the friction welding 

process in relation to the welding of copper and steel bars. J Mater Process Technol 

1998; 82: 127-136. [9] Dobrovidov.AN et al. Selection of optimum conditions for the 

friction welding of high speed steel 45. Weld Prod 1975;22(3):22–6.                     

[10] D. Ananthapadmanaban, V. Seshagiri Rao, Nikhil Abraham, K. Prasad Rao. A study of 

mechanical properties of friction welded mild steel to stainless steel joints. Mater 

Design 2009;30: 2642–2646.                                                                                                                      

[11] Sathiya P, Aravindan S, Noorul Hag A. Mechanical and metallurgical properties of 

frictionwelded AISI 304 austenitic stainless steel. Int J Adv Manufact Technol 2005; 

26: 505−511.                                                                                                                                         



   International Journal of Advanced Research in  ISSN: 2278-6252 

  Engineering and Applied Sciences  Impact Factor: 5.795 

 

Vol. 4 | No. 6 | June 2015 www.garph.co.uk IJAREAS | 23 
 

[12] Mumim S. Evaluation of the joint interface properties of austenitic stainless steel 

joined by friction welding. Mater Design 2007; 28: 2244-2250.                                                                   

[13] V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, S. Sundaresan. Effect of weld metal 

chemistry and heat input on the structure and properties of duplex stainless steel 

welds. Mater Sci Eng 2003; A 358: 9-16.                                                                                                           

[14] R.N. Gunn. Duplex Stainless Steels-Microstructure, Properties and Applications. 

Cambridge:Abington Publishing; 2003.                                                                                                 

[15] Practical guidelines for the fabrication of duplex stainless steels. London: 

International Molybdenum Association; 2009.                                                                                                   

[16] S. Topolska, J. Łabanowski. Effect of microstructure on impact toughness of duplex 

and super duplex stainless steels. J Achievement Mater and Manuf Eng 2009; 36/2: 

142-149.           

[17] Dunkerton S.B. Toughness properties of friction welds in steels. Weld J 1986; 193-

201.    

[18] Kalyanmoy Deb. Optimizations for Engineering Design - Algorithm and Examples. 

NewDelhi: Prentice Hall of India; 1996.                                                                                                 

[19] A.I. Khuri, J.A. Cornell. Response Surfaces; Design and Analysis. New York: Marcel 

Dekker; 1996.                                                            

[20] M. Yousefieh, M. Shamanian, A. Saatchi. Optimization of the pulsed current gas 

tungstenarc welding (PCGTAW) parameters for corrosion resistance of super duplex 

stainless steel (UNSS32760) welds using the Taguchi method. J Alloy Compd 2010; 

509: 782-788.                

[21] P. Sathiya, S. Aravindan, A. Noorul Haq, K. Paneerselvam. Optimization of 

frictionwelding parameters using evolutionary computational techniques. J Mater 

Process Technol 2009;209: 2576-2584.                                                                                                                                      

[22] R. Paventhan, P.R. Lakshminarayanan and V. Balasubramanian. Optimization of 

Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel. J 

Iron And SteelResearch, Int 2012; 19(1): 66-71.                                                                                          

[23] Gunaraj V, Murugan N. Application of response surface methodology for predicting 

weld bead quality in submerged arc welding of pipes. J Mater Process Technol 1999; 

88: 266-75.     



   International Journal of Advanced Research in  ISSN: 2278-6252 

  Engineering and Applied Sciences  Impact Factor: 5.795 

 

Vol. 4 | No. 6 | June 2015 www.garph.co.uk IJAREAS | 24 
 

[24] Abdullah Konak, David W. Coit, Alice E. Smith. Multi-objective optimization using 

genetic algorithms: A tutorial. Reliab Eng and Syst Safety 2006; 91: 992–1007.                                     

[25] Burke, L., 1991. Introduction to arti®cial neural systems for pattern recognition. 

Computers and Operations Research 18 (2), 211±220.                                                                                           

[26] Chiu, C.-C., Cook, D.F., Pignatiello, J.J., 1995. Radial basis function neural network 

for Kraft pulping forecast. International Journal of Industrial Engineering 2 (3), 209-

215.                     

[27] Mitchell M. 1999: An introduction to genetic algorithms. MIT press.                                    

[28] Grundlingh . 2003: simple cryptographic cipher using genetic algorithm          

[29] Garg.2006: Genetic algorithm to break a simplified data encryption standard 

algorithm  

[30] Design-Expert software version 8.0 user's Guide. 2009.   

[31] R.H. Myers, D.C. Montgomery, Response Surface Methodology: Process and Product 

Optimization using Designed Experiments. New York: Wiley; 1995.                                

[32] Deb Kalyanmoy. Multi-Objective Optimization using Evolutionary Algorithms. 

Chichester.  

List of Tables  

Table 1 Process variables and its bounds 

S.NO  INPUT VARIABLE  RANGE  

1  Friction pressure  40-120 MPA  

2  Upset pressure  125-175 MPA  

3  Burn Off Length  2-6 MM  

4  Speed  1000-2000 RPM  

 

Table 2 Base material chemical composition (weight in %). 

GRADE  UNS  NO.  EN NO.  C  Cr  Ni  Mo  N   Mn  Cu  W  

2507  S32760  1.4501  0.03  24-26  6-8  3-4  0.2-
0.3  

1  0.51  0.51  
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Table 3 Input and output variables for tensile strength 

EXP.NO  
FRICTION 
PRESSURE  

UPSET 
PRESSURE  

BURN OFF 
LENGTH  

SPEED  
TENSILE 
STRENGTH  

1  40  125  2  1000  842  

2  120  125  2  1000  821  

3  40  175  2  1000  816  

4  120  175  2  1000  814  

5  40  125  6  1000  846  

6  120  125  6  1000  842  

7  40  175  6  1000  825  

8  120  175  6  1000  835  

9  40  125  2  2000  824  

10  120  125  2  2000  822  

11  40  175  2  2000  825  

12  120  175  2  2000  838  

13  40  125  6  2000  824  

14  120  125  6  2000  835  

15  40  175  6  2000  824  

16  120  175  6  2000  850  

17  40  150  4  1500  821  

18  120  150  4  1500  824  

19  80  125  4  1500  822  

20  80  175  4  1500  818  

21  80  150  2  1500  823  

22  80  150  6  1500  832  

23  80  150  4  1000  839  

24  80  150  4  2000  838  

25  80  150  4  1500  826  

26  80  150  4  1500  824  

27  80  150  4  1500  825  

28  80  150  4  1500  826  

29  80  150  4  1500  827  

30  80  150  4  1500  825  

31  80  150  4  1500  823  
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Table 4  ANNOVA table – Tensile strength 

Source  Sum of  
Squares  

df  Mean  
Square  

F  
Value  

p-value  
Prob > F  

 

Model  2395.413762  13  184.2626  139.0864  < 0.0001  significant  

  A-A  78.68999022  1  78.68999  59.39732  < 0.0001   

  B-B  34.61296677  1  34.61297  26.1268  < 0.0001   

  C-C  0.820961573  1  0.820962  0.619684  0.4420   

  D-D  785.6758095 1  785.6758  593.0492  < 0.0001   

  AB  248.0625  1  248.0625  187.2442  < 0.0001   

  AC  189.0625  1  189.0625  142.7094  < 0.0001   

  AD  264.0625  1  264.0625  199.3215  < 0.0001   

  BD  540.5625  1  540.5625  408.0311  < 0.0001   

  CD  60.0625  1  60.0625  45.33679  < 0.0001   

  A^2  30.75766551  1  30.75767  23.21671  0.0002   

  B^2  91.64866897  1  91.64867  69.17887  < 0.0001   

  C^2  6.293997693  1  6.293998  4.750878  0.0436   

  D^2  409.2213333  1  409.2213  308.8912  < 0.0001   

Residual  22.52172222  17  1.324807     

Lack of  
Fit  11.66457937  11  1.060416  0.58602  0.7907  

not significant  

Pure 
Error  10.85714286  6  1.809524     

Cor 
Total  2417.935484  30      
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Table 5 Input and output variables for shrinkage. 

EXP.NO  
FRICTION 
PRESSURE  

UPSET 
PRESSURE  

BURN OFF 
LENGTH  

SPEED  SHRINKAGE  

1  40  125  2  1000  3.6  

2  120  125  2  1000  2.7  

3  40  175  2  1000  5.78  

4  120  175  2  1000  3.07  

5  40  125  6  1000  8.27  

6  120  125  6  1000  7  

7  40  175  6  1000  11.17  

8  120  175  6  1000  7.41  

9  40  125  2  2000  6.19  

10  120  125  2  2000  3.04  

11  40  175  2  2000  9.57  

12  120  175  2  2000  3.81  

13  40  125  6  2000  12.49  

14  120  125  6  2000  7.42  

15  40  175  6  2000  15.92  

16  120  175  6  2000  8.06  

17  40  150  4  1500  9.72  

18  120  150  4  1500  5.43  

19  120  125  4  1500  5.61  

20  80  175  4  1500  7.25  

21  80  150  2  1500  3.89  

22  80  150  6  1500  8.63  

23  80  150  4  1000  5.21  

24  80  150  4  2000  6.65  

25  80  150  4  1500  6.39  

26  80  150  4  1500  6.14  

27  80  150  4  1500  6.41  

28  80  150  4  1500  6.39  

29  80  150 4  1500  6.14  

30  80  150  4  1500  6.41  
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Table 6 ANNOVA table - Shrinkage 

Source  Sum of  
Squares  

df  Mean  
Square  

F  
Value  

p-value  
Prob > F  

 

 

Model  238.9649411  11  21.72408556  339.9910708  <0.0001  significant  

  A-A  0.014810315  1  0.014810315  0.231787653  0.6360   

  B-B  3.185977811  1  3.185977811  49.86189198  <0.0001   

  C-C  8.278413356  1  8.278413356  129.5606489  <0.0001   

  D-D  1.336198163  1  1.336198163  20.91206292  0.0002   

  AB  6.346081585  1  6.346081585  99.3188444  <0.0001   

  AC  1.8496  1  1.8496  28.94701748  <0.0001   

  AD  10.89  1  10.89  170.4330776  <0.0001   

  BD  0.3481  1  0.3481  5.447911325  0.0314   

  CD  0.416025  1  0.416025  6.510966127  0.0200   

  A^2  6.794516264  1  6.794516264  106.3370356  <0.0001   

  D^2  0.679147351  1  0.679147351  10.62894152  0.0043   

Residual  1.150128852  18  0.063896047     

Lack of Fit  1.059595519  13  0.081507348  4.501510362  0.0535  
not 
significant  

Pure Error  0.090533333  5  0.018106667     

Cor Total  240.11507  29      

 

Table 7 Comparison between Theoretical and Experimental Input and Output variable for 

maximized Tensile Strength 

 Input parameters  Output 
parameter  

Friction 
Pressure  

Upset 
Pressure  

Burn off 
Length  

Speed  Tensile 
strength  

(MPA)  (MPA)  (MM)  (RPM)  (MPA)  

Theoretically optimized 
parameters by GA  

49.4  126.9  5.8  1037.5  847.3048  

Experimentally used 
parameters  

40  125  6  1000  846  
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Table 8 Comparison between Theoretical and Experimental Input and Output variable for 

minimized Shrinkage 

 Input parameters  Output 
parameter  

Friction 
Pressure  

Upset 
Pressure  

Burn off 
Length  

Speed  Shrinkage  

(MPA)  (MPA)  (MM)  (RPM)  (MM)  

Theoretically 
optimized  
parameters by GA  

118.1  126.3  2.1  1026.5  2.6962  

Experimentally used 
parameters  

120  125  2  1000  2.7  

 

 

Fig. 1. Friction welding machine 

 

 

Fig. 2. Friction welded samples 
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Fig. 3. Graph for maximum value of tensile strength 

 

Fig. 4. Graph for minimum value of shrinkage 

 

 

 

 


