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Abstract: I have discussed about a LRS Bianchi type-I cosmological model filled with 

stiff fluid, variable gravitational constant and cosmological constants. The 

cosmological models are obtained by assuming the cosmological term inversely 

proportional to scale factor. The physical significance of the cosmological models are 

also  discussed.  
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1. INTRODUCTION  

After the cosmological constant was first introduced into general relativity by 

Einstein, its significance was studied by various cosmologists (for example Petrosian, 

V1975 ), but no satisfactory results of its meaning have been reported as yet. 

Zel’dovich (1968) has tried to visualize the meaning of this term from the theory of 

elementary particles. Further, Linde (1974) has argued that the cosmological term 

arises from spontaneous symmetry breaking and suggested that the term is not a 

constant but a function of temperature. It is also well known that there is a certain 

degree of anisotropy in the actual universe. Therefore, we have chosen the metric 

for the  LRS cosmological model to be Bianchi type-I. 

Solutions to the field equations may also be generated by law of variation of scale 

factor which was proposed by Pavon, D. (1991). In earlier literature cosmological 

models with cosmological term is proportional to scale factor have been studied by  

Holy, F. et al(1997), Olson, T.S. et al. (1987), Pavon, D. (1991), Beesham, A (1994), 

Maia, M.D. et al. (1994), Silveria, V. et al. (1994,1997), Torres, L.F.B. et al. (1996). 

Chen and Wu (1990) considered Λ varying R-2  (R is the scale factor) Carvalho and 

Lima (1992) generated it by taking  Λ = α R-2 + βH2   where R is the scale factor of 

Robertson-Walker metric, H is the Hubble parameter and α, β are adjustable 

dimensionless parameters .  

The idea of variable gravitational constant G in the framework of general relativity 

was first proposed by Dirac (1937). Lau (1983) working in the framework of general 

relativity, proposed modification linking the variation of G with that of Λ. This 

modification allows us to use Einstein's field equations formally unchanged  since 

variation in Λ is accompanied by a variation of G. A number of authors investigated  

Bianchies models, using this approach (Abdel-Rahman 1990; Berman 1991; 

Sisterio1991;  Kalligas et al. 1992; Abdussattar and Vishwakarma 1997; Vishwakarma 

2000,2005; Pradhan et al. 2006; Singh et al 2007; Singh and Tiwari 2007 Tiwari, R.K 

2008,).   
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In this paper  I have considered a LRS Bianchi type-I cosmological model with 

variables G and Λ filled with stiff fluid . We have obtained exact solutions of the field 

equations by assuming that cosmological term is inversely proportional to R (where R 

is scale factor ).  The paper is  organized as follows.  Basic equations of the models in 

sec. 2. and solution in sec. 3. The physical behavior of the model is discussed in detail 

is last section. 

2. METRIC AND FILED EQUATIONS :   

 We consider spatially homogeneous and anisotropic LRS Bianchi type-I metric

 ds2 = -dt2 +A2(t) dx2 + B2(t) (dy2 + dz2 )     .....(1) 

 The energy-momentum tensor Tij for  perfect fluid distribution is given by  

             Tij = (ρ +p) vivj + pgij       .....(2) 

 where ρ  is the energy density of the cosmic matter and p is its pressure, vi is 

the four velocity vector such that viv
i = 1.  

We take the equation of state ( Zel'dovich 1962) 

p = ρ  ,   ω=1                        .....(3) 

The Einstein's field equations with time dependent  G and Λ given by 

(Weinberg 1972) 

Rij  - ½ Rgij = -8π G(t) Tij + Λ (t)gij      .....(4) 

For the metric (1) and energy - momentum tensor (2) in co-moving system of 

co-ordinates, the field equation (4) yields.  
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In view of vanishing divergence of Einstein tensor, we have  
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The usual energy conservation equation   ,0; =j
jiT   yields  
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Equation (8) together with (9) puts G and Λ in some sort of coupled field given 

by  

08 =Λ+ Gπρ          ....(10) 

Here and elsewhere a dot denotes for ordinary differentiation with respect to 

t. From (10) implying that Λ is a constant whenever G is constant.  

Let R be the average scale factor of  LRS Bianchi type -I universe  i.e.  

3R = 2AB          .....(11) 

Using equation (3) in equation (9) and then integrating, we get,  

.  6R
k

=ρ                    .....(12) 

where k > 0 is constant of integration.  

From (5), (6) and (7), we obtain  

3
1

R
k

B
B

A
A

=−


         .....(13) 

where k1 is constant of integration. The Hubble parameter  H, volume 

expansion  θ,  sheer  σ  and deceleration parameter q are given by  

R
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Equations (5)-(7) and (9) can be written in terms of H,  σ and q as  

( ) Λ−=−− GpqH πσ 812 22         .....(14) 
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Λ+=− ρπσ GH 83 22        .....(15) 

Overduin and Cooperstock (1998) define  
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and    23
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are  respectively critical density, vacuum density and density parameter 
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 From (15),  we  obtain  
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Thus, the presence of positive Λ  puts restriction on the upper limit of 

anisotropy, where as a negative Λ contributes to the anisotropy.  

From (14), and (15), we have  
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Thus the universe will be in decelerating phase for negative  Λ,  and for 

positive  Λ, universe will slows down the rate of decrease.  Also R
R


σσ 3

−=
  implying  

that σ decreases in   an evolving universe and it is negligible for infinitely large value 

of R.   

3.  SOLUTION OF THE FIELD EQUATIONS -  

The system of equations (3), (5)-(7), and (10), supply only five equations in six 

unknowns (A, B, ρ, p, G and Λ).  One extra equation is needed to solve the system  

completely. Holy, F. et al (1997) considered  Λ α a-3  whereas Λα a-m  (a is scale factor 
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and m is constant) considered by Olson, T.S. et al. (1987), Pavon, D. (1991), Maia, 

M.D. et al. (1994), Silveria, V. et. al. (1994, 1997) ,  Torres, LF. B. et al. (1996). 

Thus we take the decaying  vacuum  energy density 

Λ = 
R
a

         .....(20) 

where a is positive constants.  Using eq. (12) and (20) in eq. (10),  

we get  

5
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From eq (14), (15), (20) and (21) we get    
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  Integrating (22) we get  
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 where the integration constant to is related to the choice of origin of time.  

From (23) we obtain  
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By using (24) in (13) , the metric (1) assumes the form 
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where m1, m2 are constants. 
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For the model (25), spatial volume V, matter density ρ, pressure p, 

gravitational constant G, cosmological constant Λ are given by 
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Expansion scalar θ and shear σ are given by  
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The density parameter is given by  

=Ω
cρ
ρ

   =
6
1

        .....(32) 

The deceleration parameter  q for the model is  

2
1

−=q             ..(33) 

In the model,  we observe that , the spatial volume V is zero at t = t
a

t ′′=
−

5
2

2
1

0  and  

expansion scalar θ is infinite at t= t" which shows that the universe starts evolving 

with zero volume and infinite rate of expansion at  t= t". Initially at t = t" the energy 

density ρ,  pressure p, Λ  and shear scalar σ are infinite. As t increases the spatial 

volume increases but  the  expansion  scalar decreases. Thus the expansion rate 
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decreases as time increases.  As t tends to ∞ the spatial volume V becomes infinitely 

large.  As t increases all the parameters  p, ρ, Λ, θ, ρc,  ρv, decrease and tend to zero 

asymptotically. Therefore, the model essentially gives an empty universe for large t. 

The ratio 0→
θ
σ

  as  t →∞, which  shows that model approaches isotropy for large 

values of t.  The gravitational constant G(t) is zero at t =t" and as t increases, G 

increases and it becomes infinite large at late times.  

Further, we observe that  2

1
t

αΛ    which follows from the model of Kalligas et 

al. (1996);  Berman (1990); Berman and Som (1990); Berman et al. (1989) and 

Bertolami (1986a, b). This form of Λ is physically  reasonable as observations suggest 

that Λ is very small in the present universe.  
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