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Abstract: Recently, Tian and Chen have introduced a new concept of sequence of time 

invariant functions. In this paper we try to investigate the chaotic behavior of the uniform 

limit function in the iterative way of a sequence of continuous topologically transitive 

functions in the strongly iterative way in a compact interval. Surprisingly, we find that the 

uniform limit function in the iterative way is chaotic in the sense of Devaney. We also give 

some examples in the last section. 
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1. INTRODUCTION 

A dynamical system is a study of how physical and mathematical systems evolve with time, 

developed through the collective efforts of mathematicians and scientists in many different 

fields. A dynamical system includes the following components: a phase space S whose 

elements represent possible states of the system, time t (which may be discrete or 

continuous) and an evolution law (that is, a rule that allows determination of the state at 

time t from the knowledge of the states at all previous times). The applications and origins 

of dynamical systems lie in many different branches of science. Today the expression 

dynamical system is used as a synonym of nonlinear system of equations.  

As indicated above dynamical systems may be divided into two broad categories, one is 

discrete dynamical system, where the time variable is discrete and the other is continuous 

dynamical system, where the time variable is continuous. During the last few decades there 

has been interesting development in the study of discrete systems of the form 

                                                 ..,,.........2,1,0),(1 ==+ nxfx nn                                       (1.1) 

where ),( dX  is a compact metric space and XXf →:  is a continuous mapping. The basic 

target in the study of the system (1.1) is to understand the character of all the orbits 

.,..........),(),(, 2xfxfx for any Xx∈ . 

Chaotic dynamical systems constitute a special class of dynamical systems, which received a 

great deal of attention from the past. A chaotic system is unpredictable and can not be 

broken down or decomposed into two invariant open subsets. Although there is no 

universally accepted mathematical definition of chaos, there are many wellknown 

definitions [3, 5, 6] in the world. But Devaney’s [3] definition of chaos is one of the most 

popular one and it is also purely topological. In this paper we consider the definition of 

chaos in the sense of Devaney. 

It is a reality that if a sequence of continuous functions converges uniformly, the uniform 

limit function is continuous. Also, the limit function of a uniformly convergent sequence of 

Riemann-integrable functions is itself Riemann-integrable. However, differentiability of the 

limit function is not assured by uniform convergence of a sequence of differentiable 

functions. In fact, uniform convergence of the derivatives is also needed. Therefore, it is 

meaningful and of interest to investigate the properties of the elements of an uniformly 

convergent sequence of functions that can be inherited by the limit functions. So it is an 
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interesting line of research, to investigate which chaotic properties are preserved by 

uniform convergence. From the literature we have surveyed, it appears that the answer to 

this question is not yet thoroughly investigated. We have noticed that only some progress 

[2, 4] has been made in respect of uniform convergence of chaotic functions. 

Tian and Chen [8] studied chaos of a sequence of time invariant continuous functions on a 

general metric space. The authors also introduced quite a few new concepts, such as ‘chaos 

in the successive way in the sense of Devaney’, ‘chaos in the iterative way in the sense of 

Devaney’ etc. 

In this paper we have introduced the concepts of ‘uniform convergence in the iterative way’ 

and ‘topological transitivity in the strongly iterative way’. We have proved that if { }∞=1nnf  is a 

sequence of continuous functions which is topologically transitive in the strongly iterative 

way in an infinite compact metric space ),( dX , the uniform limit function in the iterative 

way is topologically transitive. Hence by the theorem of Vellekoop et al [9], we get that, if 

,1,: ≥→ nXXfn is a sequence of continuous functions that converges uniformly to 

XXf →:  in the iterative way, f  is chaotic on X  whenever the sequence { }∞=1nnf  is 

topologically transitive in the strongly iterative way, where X is any compact interval. We 

have provided an example to show that the denseness property of Devaney's definition is 

lost on the limit function. Also an example is given for illustrating the concept of uniform 

convergence in the iterative way. 

2. MATHEMATICAL PRELIMINARIES 

In this section we give some existing definition results and notations which are essential for 

the discussion in next sections. We also introduce some new definitions. 

Throughout this paper we use the following mathematical notations. 

i) The radius of any ball A  is denoted by )(ARad . 

ii) If 0>ε  is arbitrary, we denote the ε -neighborhood of any point x by )(sSε .  

iii) Let { }∞=1nnf  be a sequence of continuous functions from X to ,X  where ),( dX  is a metric 

space. Then we denote )(........... 11 xfff kk  −  by )(xFk , for all 1≥k  and .Xx∈   

iv) We denote the set of natural numbers by N. 

v) Closure of any set A is denoted by A . 
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vi) We also denote the complement of any set  M  by cM . 

 

In the following we state some definitions.  

Definition 2.1 [8] (Orbit in the iterative way): Let ),( dX  be a compact metric space and 

Xx∈  be any point. Also let ,1,: ≥→ nXXfn be a sequence of continuous functions. Then 

....}....................),(),(),(,{ 123121 xfffxffxfx   is called orbit of the sequence { }∞=1nnf  

(starting at x) in the iterative way. 

Definition 2.2 [7] (Uniform convergence): Let ),( dX  be a metric space and 

1,: ≥→ nXXfn , be a sequence of continuous functions defined on X . Let XXf →:  be 

a continuous function such that, ε<))(),(( xfxfd n , for all 0nn ≥  and for all Xx∈ , where 

0n  is a positive integer (depending on ε  only), then we say that { }∞=1nnf  is uniformly 

convergent to f . If  { }∞=1nnf  is uniformly convergent to f , we write ff uniformly
n  → . 

We now introduce the notion of uniform convergence in the iterative way.   

Definition 2.3 (Uniform convergence in the iterative way): Let ),( dX  be a metric space and 

1,: ≥→ nXXfn , be a sequence of continuous functions defined on X . Let XXf →:  be 

a continuous function such that, ε<))(),(( xfxFd n , for all 0nn ≥  and for all Xx∈ , where 

0n  is a positive integer (depending on ε  only), then we say that { }∞=1nnf  is uniformly 

convergent to f  in the iterative way. If  { }∞=1nnf  is uniformly convergent to f  in the 

iterative way, we write ff uniformly
n  →  in the iterative way. 

It should be noted that if { }∞=1nnf  is uniformly convergent to f in the iterative way, the same 

{ }∞=1nnF  is uniformly convergent to f. 

An example of the above type of convergent sequence has been illustrated in the last 

section. 

Definition 2.4 [3] (Sensitive dependence on initial conditions): A continuous map 

XXf →: , where ),( dX  is a metric space, has sensitive dependence on initial conditions 

if there exists 0>δ  such that, for any Xx∈  and any neighborhood )(xN  of x , there exist 

)(xNy∈  and 0≥n  such that δ>))(),(( yfxfd nn .  
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Definition 2.5 [3] (Topological transitivity): The function XXf →:  is said to be 

topologically transitive if for any pair of non-empty open sets XLK ⊂,  there exists 0>n  

such that φ≠∩ LKf n )( , where ),( dX  is a metric space. 

Definition 2.6 [3] (Dense set of periodic points): Let XXf →:  be a continuous function on 

a metric space ),( dX . If the set of all periodic points of f  is dense in X , f  is said to have 

a dense set of periodic points. 

Definition 2.7 [3] (Chaos in the sense of Devaney): Let XXf →:  be a continuous function 

on a metric space ),( dX . Then f is said to be chaotic in the sense of Devaney if: 

i) f  is topologically transitive on X, 

ii) the set of periodic points are dense in X, 

iii) f  has sensitive dependence on initial conditions. 

Later it was shown by Banks et al [1], that the conditions (i) and (ii) together implies the 

condition (iii). So, property (iii) is redundant in the above definition. 

Definition 2.8 [8] (Topological transitivity in the iterative way): Let ),( dX  be a metric space 

and 1,: ≥→ nXXfn , be a sequence of continuous functions. If, for any two non-empty 

open subsets U  and V  of X , there exists a positive integer k  such that φ≠∩VUFk )( , 

the sequence of functions { }∞=1nnf  is said to be topologically transitive on X  in the iterative 

way. 

We give below a stronger version of the above definition. 

Definition 2.9 (Topological transitivity in the strongly iterative way): Let ),( dX  be a metric 

space and 1,: ≥→ nXXfn , be a sequence of continuous functions. If,  

i) for any two non-empty open subsets U and V of X , there exists a positive integer k such 

that φ≠∩VUFk )(  and  

ii) for any two pair of distinct non-empty open subsets 11,VU  and 22 ,VU  of X  there exist 

positive integers 21 kk ≠  such that, φ≠∩ 11)(
1

VUFk  and φ≠∩ 22 )(
2

VUFk ,  

the sequence of functions { }∞=1nnf  is said to be topologically transitive on X in the strongly 

iterative way. 

Definition 2.10 [8] (Sensitive dependence on initial conditions in the iterative way): Let (X, d) 

be a metric space and 1,: ≥→ nXXfn , be a sequence of continuous functions. If there 
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exists a constant 0>δ  such that for any point Xx∈  and any neighborhood )(xN  of x, 

there exist a point )(xNy∈  and a positive integer k such that δ>))(),(( yFxFd kk , the 

sequence of functions { }∞=1nnf  is said to have sensitive dependence on initial conditions in 

the iterative way.  

Definition 2.11 [7] (Well ordering property): Every non-empty subset of the set of natural 

numbers has a least element. 

 

We shall prove the following lemma which is required for proving the theorems. 

Lemma 2.1: Every infinite subset of the set of natural numbers is countable. 

Proof: Let N be the set of natural numbers and A  an infinite subset of N. Since A is a non-

empty subset of N, it has a least element by well ordering property of N. Let 1a   be the least 

element of A. Then }{ 1aA−  is non-empty; hence it has a least element by the same 

argument. Let 2a  be the least element of }{ 1aA− . Similarly, },{ 21 aaA−  is non-empty. So 

continuing this process we can write all elements of  A  as an infinite sequence, that is, 

........},.........,{ 21 aaA = . Hence A is countable. So we conclude that every infinite subset of 

the set of natural numbers is countable. 

 

Lastly, we give the statement of an important result, which is known as Jacobi's Theorem. 

Theorem 2.1 (Jacobi's Theorem [3]): 

Let 1S  denotes the unit circle in the plane and 11: SST →λ  be defined by πλθθλ 2)( +=T , 

then each orbit λT  is dense in 1S  if λ  is irrational. 

3. THE MAIN THEOREMS 

Theorem 3.1: Let ),( dX  be an infinite compact metric space and { }∞=1nnf  a continuous 

sequence of functions from X  into X such that ff uniformly
n  →  in the iterative way. If the 

sequence { }∞=1nnf  is topologically transitive on X  in the strongly iterative way, f  is 

topologically transitive.  

Proof: Let 1U  and 1V  be any two non-empty open subsets of X . Since the sequence { }∞=1nnf  

is topologically transitive on X  in the strongly iterative way, there exists a positive integer 
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1k  such that φ≠∩ 11)(
1

VUFk , where the sequence { }∞=1nnF  is as defined earlier. Let 

0, >′′′ εε . Since 1U  is a non-empty open subset of X , it has non-empty interior.  For an 

interior point of 1U , we can take an open ball U  of radius ε ′  centered at this interior point 

such that 1UU ⊂ .  Next we take an open ball UU ⊂2  such that 
2

)( 2
ε ′

=URad  with center 

of 2U  same as that of U . We now consider the sets 2U  and cU . Then the distance 

between these two sets is at least 
2
ε ′

. Hence minimum distance between 2U  and 1U  is at 

least 
2
ε ′

. Similarly, we take an open ball 12 VV ⊂  such that 
2

)( 2
ε ′′

=VRad  and the minimum 

distance between 2V  and 1V  is at least 
2
ε ′′

. Again, by topological transitivity in the strongly 

iterative way, there exists a positive integer 2k  different from 1k , such that 

φ≠∩ 22 )(
2

VUFk . We now take an open ball 23 UU ⊂  such that 
3

)( 3
ε ′

=URad  and the 

center of 3U  is same as that of 2U . Similarly, we take an open ball 23 VV ⊂  such that 

3
)( 3

ε ′′
=VRad  and the center of 3V  is same as that of 2V . Then by topological transitivity in 

the strongly iterative way, there exists a positive integer 3k  different from both 1k  and 2k , 

such that φ≠∩ 33 )(
3

VUFk . (This has been illustrated in Figure 1 and Figure 2.) 
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By our construction 
2
ε ′

≥AB  and 
2
ε ′′

≥CD . Also, φ≠∩ 11)(
1

VUFk , φ≠∩ 22 )(
2

VUFk , 

φ≠∩ 33 )(
3

VUFk  and so on. 

 

Let us continue this process repeatedly. Then ∞
=1}{ nnk  is an infinite subset of N  and hence 

by Lemma 2.1, is countable. Therefore we can rearrange this set as a sequence by taking the 

lest element first, then the next lowest element and so on. We now denote this 

rearrangement by ∞
=′ 1}{ nnk . Then ∞

=′ 1}{ nnk  is a strictly monotonic increasing sequence of 

positive integers.  

 

Here the following facts are noticeable: 

a) iU ’s and iV ’s are non-empty open sets such that ii UU ⊂+1  and ii VV ⊂+1 , for all 1≥i . 

b) There exists a sequence of positive integers ∞
=′ 1}{ nnk  such that φ≠∩ ′′′ nnk VUF

n
)( , for all 

n′ . 

c) iU ’s (and iV ’s) are all open sets such that centres of  iU ’s (and iV ’s) are same, for all 

2≥i . 

d) By a) and b) it can be proved that φ≠∩
′ 11)( VUF

nk , for all nk ′ . 

 

We now consider the sequence }2:{ ≥′
′

nF
nk . Then fF uniformly

kn
 →

′
, that is, }2:{ ≥′

′
nf

nk  is 

uniformly convergent to f  in the iterative way. 

Then for εεε <
′′

=
′

))(),((,
10

xfxFd
nk , for all mn ′≥′  and for all Xx∈ , for some 

}1{−∈′ Nm .                                                                                                                   (3.1) 

We now show that φ≠∩ 11)( VUf l , for an 0>l .  

Let mmk VUFy
m ′′ ∩∈
′

)( .                                                                                                  (3.2)  

Hence mVy ′∈  and )( mk UFy
m ′′

∈ . So there exists a mUx ′∈  such that yxF
mk =
′

)( . Again from 

(3.1) we get ε<
′

))(),(( xfxFd
mk . 

So )),(()( xFSxf
mk ′

∈ ε  that is, )()( ySxf ε∈ .                                                                (3.3) 
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From (3.2) we get )( 1UFy
mk ′

∈  and 12 VVy ⊂∈ . Now ).()( 11 UfxfUxUx m ∈⇒∈⇒∈ ′    

Since 1≠′m , by the definition of ε  and (3.3) and also our construction above we get that 

1)( Vxf ∈ . Hence φ≠∩ 11)( VUf . 

So, we conclude that f  is topologically transitive. 

 

Hence by the application of the theorem of Vellekoop et al [9] and Theorem 3.1 as above we 

get our desired result. 

Theorem 3.2 Let X  be a compact interval of real numbers and ,1,: ≥→ nXXfn  be a 

sequence of continuous functions that converges uniformly to XXf →:  in the iterative 

way, then f  is chaotic on X  whenever { }∞=1nnf  is topologically transitive in the strongly 

iterative way. 

4. CONCLUSIONS 

Recently, Flores [4] has shown that, if ,1,: ≥→ nXXfn  is a topologically transitive 

continuous sequence of functions on a compact metric space ),( dX , the uniform limit 

function f is not necessarily topologically transitive and also he has given a sufficient 

condition for transitivity of f into a perfect metric space. But in this paper we have proved 

that, if ,1,: ≥→ nXXfn  is a sequence of topologically transitive continuous functions in 

the strongly iterative way on an infinite compact metric space ),( dX , the uniform limit 

function in the iterative way f is also topologically transitive (Theorem 3.1) in X. Hence by 

the theorem of Vellekoop et al, we can say that if ,1,: ≥→ nXXfn  is a sequence of 

topologically transitive continuous functions in the strongly iterative way on a compact 

interval, the uniform limit function is chaotic. In [4], some additional conditions are assumed 

to prove that the limiting function is chaotic. Here no other conditions are assumed for 

proving f  to be chaotic, in Theorem 3.2.  

 

We now give an example to show that denseness of periodic points may be lost in the case 

of the limit function. 

Example 4.1: We consider the sequence of translation maps 11

2
11

: SST n

n

→






 +

 by  
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,
2
112)(

2
11

n

n
n

xxT n 





 ++=







 +

π  where 1S  is the unit circle on the plane. Now obviously 

n

n






 +

2
11 is a rational number, for all 1≥n . Hence 

q
p

n

n

=





 +

2
11 , where qp,  are integers 

and 0≠q . Then we get that xpx
q
pqxxT q

q
p =+=+= ππ 2.2)( . So all points of 1S  are 

periodic with periods q. Hence the set of all periodic points of 1S  is dense in 1S . But note 

that, e
n

Lt
n

n
=






 +

∞→ 2
11 , where e  is an irrational number. 

Then by Jacobi's Theorem, that is, the Theorem 2.1, we get that )(xT e  has a dense orbit for 

each 1Sx∈ . Thus there is no periodic point. This proves that denseness of periodic points 

will be lost in the case of the limit function. 

 

Lastly, we give an example of a uniformly convergent sequence in the iterative way. 

Example 4.2 We consider the usual metric space. Let ]2,0[]2,0[:)( →xfn  be a sequence of 

continuous functions, defined by ,11)( x
n

xfn 





 −=  for 2≥n  and xxf =)(1 . Then by simple 

calculation we get 
n
xxFn =)( , for all 1≥n . Hence ]2,0[]2,0[:)( →xfn  is a sequence of 

continuous functions such that 0 →uniformly
nF . Consequently 0 →uniformly

nf  in the 

iterative way.  

AN OPEN PROBLEM 

In this paper we have proved that the uniform limit function in the iterative way of a 

sequence of topologically transitive functions in the strongly iterative way is chaotic in a 

compact interval. In this context there arises an open problem. Is the uniform limit function 

of a sequence of topologically transitive functions in the strongly iterative way is chaotic in a 

compact interval? The answer to this question is yet to be investigated. 
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