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Abstract: Ordinary differential equation is frequently found in physics and other technical 

fields. In particular it occurs when solving Laplace’s equation (and related partial differential 

equations) in spherical co-ordinates. The Legendre’s equation and Legendre’s polynomials 

are used broadly where the directional dependence of some quantity is treated openly such 

as particular transport problems. In this paper, we describe a new scattering kernel and 

general theoretical scheme for the evaluation of the discrete and continuum eigenvalue 

spectrum in one dimensional slab geometry neutron transport equation. Firstly, some useful 

properties of Legendre polynomial which revealed during the definition of new scattering 

kernel are discussed. By using the scattering kernel in one-dimensional neutron transport 

equation we obtained an integral equation for angular part of the angular flux. 
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1. INTRODUCTION 

In applied science almost all researcher encounter some special classical orthogonal 

functions such as Legendre, Hermite and Laguerre polynomials. Along these, Legendre 

polynomials have an extensive usage area, particularly in physics and engineering. For 

example, Legendre and Associate Legendre polynomials are widely used in determination of 

wave functions of electrons in the orbits of an atom and in the determination of potential 

functions in the spherical symmetric geometry etc. Also nuclear reactor physics, Legendre 

polynomials have an extraordinary importance. Analytical and numerical computations 

neutron fluxes in a given domain are done by using two main methods called 𝑃𝑁   and 𝑆𝑁  

methods. 

2. NOTATIONS AND DEFINITIONS 

Let us define two unit vectors in three- dimensional Cartesian geometry as 

Ω = sin(𝜃) cos(𝜑) 𝑖 + sin(𝜃) sin(𝜑) 𝑗 + cos(𝜃)𝑘 ,                                                                   (2.1)  

Ω′ = sin(𝜃′) cos(𝜑′) 𝑖 + sin(𝜃′) sin(𝜑′) 𝑗 + cos(𝜃′)𝑘 .                                                              (2.2) 
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By using (2.1) and (2.2) and choosing 𝑥 = cos(𝜃) ,𝑦 = cos 𝜃′ , one can deduce that  

𝜇0 = cos 𝜃0 = Ω  .Ω′ = xy +  1− 𝑥2  1− 𝑦2 cos φ − φ′                                             (2.3) 

By definition of 𝑥,𝑦  it is clear that −1 ≤ 𝑥,𝑦 ≤ 1  and then we have  −1 ≤  𝜇0  ≤ 1 . 

Generating function and the addition theorem of Legendre polynomials of the first kind are 

given by respectively. 

1

 1 − 2𝜇0𝑡 + 𝑡2
=  𝑡𝑛𝑃𝑛

∞

𝑛=0

 𝜇0 ,  𝑡 ≤ 1,                                                                                    (2.4) 

𝑃𝑛 𝜇0 = 𝑃𝑛 𝑥 𝑃𝑛 𝑦 + 2  
 𝑛 −𝑚 !

 𝑛 +𝑚 !

𝑛

𝑚=1

 𝑃𝑛
𝑚  𝑥 𝑃𝑛

𝑚 𝑦 cos𝑚   𝜑 − 𝜑′                               (2.5) 

Multiplying both sides of (2.4) by 𝑑𝜑′  and using the additional theorem (2.4) then 

integrating in the interval [0,2𝜋], we can get  

 𝑡𝑛𝑃𝑛

∞

𝑛=0

 𝑥 𝑃𝑛 𝑦 =
2𝐾 𝑘 

𝜋 𝑎 − 𝑏
,𝑘 =  

2𝑏

𝑏 − 𝑎
,   𝑎 = 1− 2𝑥𝑦𝑡 + 𝑡2 ,𝑏 = −2𝑡 1− 𝑥2  1− 𝑦2(2.6)  

      −1 ≤ 𝑥,𝑦, 𝑡 ≤ 1   

Where 2𝐾(𝑘)/𝜋 𝑎 − 𝑏 is the generating function of the product  𝑃𝑛(𝑥) 𝑃𝑛(𝑦) as seen in 

the above equation and 𝐾(𝑘) is the complete elliptic integral of the first kind that will be 

defined later. 

By letting 𝑦 = 1 in (2.6) and using the fact that 𝑃𝑛 1 = 1 and 𝐾 0 = 𝜋 2 , we arrive at 

well known result that is, generating the function of Legendre polynomials of the first kind  

 𝑡𝑛𝑃𝑛

∞

𝑛=0

 𝑥 =
1

 1− 2𝑥𝑡 + 𝑡2
,  𝑡 ≤ 1.                                                                                        (2.7) 

We can deduce from here an interesting application of this equation by setting 𝑦 =

𝑥 in (2.6) and result is 

 𝑡𝑛
∞

𝑛=0

𝑃𝑛
2 𝑥 =

2𝐾 2 
𝑡(1− 𝑥2)

1 − 2 2𝑥2 − 1 𝑡 + 𝑡2 

𝜋 1 − 2(2𝑥2 − 1)𝑡 + 𝑡2
                                                                       (2.8) 

And one can utilize this expression as a generating function of 𝑃𝑛
2(𝑥) and furthermore 

integrating with respect to 𝑥 in the interval [−1,1] we find the result 

 
𝑢𝐾(2𝑢)

 𝑡(1− 𝑥2)

1

−1

𝑑𝑥 = 𝜋  
𝑡𝑛

2𝑛 + 1

∞

𝑛=0

=
𝜋

2 𝑡
 In  

1 +  𝑡

1 −  𝑡
 ,−1 ≤ 𝑡 ≤ 1,                               (2.9) 
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Where 𝑢 =  𝑡(1− 𝑥2)/(1− 2 2𝑥2 − 1 𝑡 + 𝑡2) 

If we expand the function 1 (𝑣 − 𝜇0 ) in terms of Legendre polynomials of the first kind, we 

find the result  

1

𝑣 − 𝜇0
=   2𝑛 + 1 𝑃𝑛

∞

𝑛=0

 𝜇0 𝑄𝑛 𝑣 ,      𝜇0 ≤ 1,    𝑣 > 1                                                    (2.10) 

By using (2.3) and (2.5) in (2.10) and integrating with respect to 𝜑′ in the interval  0,2𝜋 , we 

find that  

1

 𝑣2 + 𝑥2 + 𝑦2 − 2𝑣𝑥𝑦 − 1
=   2𝑛 + 1 𝑃𝑛

∞

𝑛=0

 𝑥 𝑃𝑛 𝑦 𝑄𝑛 𝑣 ,−1 ≤ 𝑥, 𝑦 ≤ 1,    𝑣 > 1            (2.11) 

Multiplying both sides of (2.11) by 1  1 − 2𝑦𝑡 + 𝑡2   and integrating with respect to 𝑦 in 

the interval [−1,1] we find that 

 𝑡𝑛𝑃𝑛

∞

𝑛=0

 𝑥 𝑄𝑛 𝑣 =
2

 𝑧1
  𝐹   

𝑧2

𝑧3
, 2 

𝑧4

𝑧1
 − 𝐹   

𝑧5

𝑧3
, 2 

𝑧4

𝑧1
  ,−1 ≤ 𝑥, 𝑡 ≤ 1,  𝑣 > 1       (2.12) 

Where 𝐹(𝑧,𝑘) is the first incomplete elliptic integral that will be defined later and  

𝑧1 = −1 + 2(𝑥𝑣 −  𝑥2 − 1  𝑣2 − 1 )− 𝑡2 , 𝑧2 = 1 − 𝑥𝑣 +  𝑥2 − 1 𝑣2 − 1 , 

𝑧3 = 2 𝑥2 − 1  𝑣2 − 1,  𝑧4 = −𝑡 𝑥2 − 1 𝑣2 − 1 , 𝑧5 = −1− 𝑥𝑣 +  𝑥2 − 1 𝑣2 − 1 

Furthermore if we set 𝑥 = 1 in (2.10) and then multiplying both sides by 1  1 − 2𝑦𝑡 + 𝑡2  

and integrating with respect to 𝑦 in the interval [−1,1] we find the generating function of 

Legendre polynomials of the second kind 𝑄𝑛 𝑣  as 

 𝑡𝑛𝑄𝑛(𝑣)

∞

𝑛=0

=
1

2 1− 2𝑣𝑡 + 𝑡2
 𝐼𝑛  

𝑣 − 𝑡 +  1− 2𝑣𝑡 + 𝑡2

𝑣 − 𝑡 −  1− 2𝑣𝑡 + 𝑡2
 ,  𝑡 ≤ 1,    𝑣 . 1              (2.13) 

It is also possible to find some other properties of Legendre polynomials of the second kind 

using (2.11). For instance, letting 𝑦 = 1 in (2.11) and then multiplying both sides by 

1 2   (𝑣 ′ − 𝑥) and integrating the result over x in the interval [−1, 1] we have 

  2𝑛 + 1 𝑄𝑛

∞

𝑛=0

 𝑣 ′ 𝑄𝑛 𝑣 =
1

2(𝑣 − 𝑣 ′)
 𝐼𝑛  

 1 + 𝑣 ′ (1− 𝑣)

 1− 𝑣 ′ (1 + 𝑣)
 ,        𝑣, 𝑣′ > 1               (2.14) 

The generating function of the product 𝑄𝑛 𝑣
′ 𝑄𝑛 𝑣  may also obtain using (2.11). To do 

this, the reader should do the following: first multiply (2.10) by 1 2   (𝑣 ′ − 𝑥) and then 

integrate over 𝑥 in the interval [−1, 1] and multiply by 1  1 − 2𝑦𝑡 + 𝑡2  and then integrate 

over 𝑦 in the interval [−1, 1]. The result is   
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 𝑡𝑛𝑄𝑛

∞

𝑛=0

 𝑣 ′ 𝑄𝑛 𝑣 =
1

2
   

𝑑𝑥𝑑𝑦

 𝑣 ′ − 𝑥  1− 2𝑦𝑡 + 𝑡2 𝑣2 + 𝑥2 + 𝑦2 − 2𝑣𝑥𝑦 − 1

1

−1

1

−1

                (2.15) 

−1 ≤ 𝑡 ≤ 1,  𝑣 ′, 𝑣 > 1. 

The integration in (2.15) is a quite laborious work, so we do not pay attention to it. 

Meanwhile, the complete elliptic of the first kind mentioned in (2.6) is defined as  

𝐾 𝑘 =  
𝑑𝑢

 1−𝑢2 1−𝑘2𝑢2

1

0
                                                                                                               (2.16) 

With restriction 0 ≤ 𝑘 ≤ 1. The incomplete elliptic integral of the first kind mentioned in 

(2.12) is defined as, with restriction 0 ≤ 𝑧,𝑘 < 1. 

𝐹 𝑧,𝑘 =  
𝑑𝑢

 1− 𝑢2 1− 𝑘2𝑢2

𝑧

0

                                                                                                (2.17) 

3. MAIN RESULT 

One –dimensional steady-state transport equation for one-energy group is given as  

𝑥
𝑑𝜓 𝑧, 𝑥 

𝑑𝑧
+ 𝜎𝑇𝜓 𝑧, 𝑥 =   𝜎𝑆

2𝜋

0

1

−1

 𝜇0 𝜓 𝑧,𝑦 𝑑𝜑′𝑑𝑦 + 𝑄 2 ,−𝐿 ≤ 𝑧 ≤ 𝐿,−1 ≤ 𝑥 ≤ 1          (3.1) 

Where 𝜇0 is the cosine of the scattering angle, 𝜎𝑆(𝜇0) is the neutron scattering function or 

kernel, 𝜎𝑇  is the total cross section,  𝜓(𝑧, 𝑥) is the angular flux of neutrons and 𝑄 is the 

external neutron source. Simply we say that 𝜎𝑆(𝜇0) describes the probability that a neutron 

scatters from an incident directions Ω  to a final direction Ω′ . Hence, Ω  and Ω′  are the unit 

vectors determining the direction of neutrons, Ω  and Ω′  are defined in (2.1) & (2.2) 

Neutron scattering functions for one-energy group is given, in terms of Legendre 

polynomials, by  

σ𝑆 𝜇0 =  
2𝑛 + 1

4𝜋

∞

𝑛=0

𝜎𝑆𝑛𝑃𝑛 𝜇0,  ,−1 ≤ 𝜇0 ≤ 1,                                                                        (3.2) 

Where σ𝑆𝑛 ′𝑠 are the expansion coefficients. For all reactor calculations, using only first two 

terms of (3.2) became a traditional behavior. If only the first term of (3.2) is present and 

remaining terms are zero (𝜎𝑆𝑛 = 0,𝑛 ≥ 1) then system is said to be isotropic. If only the first 

two terms of (3.2) are present and remaining terms are zero (𝜎𝑆𝑛 = 0,𝑛 ≥ 2) then system is 

said to be linear anisotropic. Of course, to get an exact solution of (3.1) all the terms in (3.2) 

should be used, though terms after the second one are negligibly small. To do this we need 

an analytical expression for the scattering function  𝜎𝑆 𝜇0 . To overcome this difficulty we 
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need to define a new scattering kernel should contain the generating function of Legendre 

polynomials of first kind, that is, the new scattering kernel should be in the form: 

σ𝑆 𝜇0 =
σ𝑆

4𝜋 1 − 2𝜇0𝑡 + 𝑡2
,  𝜇0 ≤ 1,  𝑡 ≤ 1,                                                             (3.3) 

Where σ𝑆 is any non-negative coefficient and 4𝜋 is inserted for convenience. 

If we integrate (3.3) over 𝜑′ in the interval [0,2𝜋] we obtain the scattering kernel as 

 σ𝑆 𝜇0 𝑑𝜑
′ = σ𝑆 𝑥, 𝑡,𝑦 =

σ𝑆
𝜋

2𝜋

0

 
𝐾(𝑘)

 𝑎 − 𝑏
,−1 ≤ 𝑥,𝑦, 𝑡 ≤ 1.                                            (3.4) 

Where 𝐾(𝑘) is the complete elliptic integral of the first kind defined in (2.16). If we expand 

(3.4) in terms of 𝑡, we find the following: 

σ𝑆 𝑥,𝑦, 𝑡 =
𝜎𝑠
2

  𝑡𝑛𝑃𝑛

∞

𝑛=0

 𝑥 𝑃𝑛 𝑦 ,        − 1 ≤ 𝑥,𝑦, 𝑡 ≤ 1.                                                 (3.5) 

Using the addition theorem of Legendre polynomials in (3.2) and then integrating over 𝜑′ in 

the interval [0,2π] and equating this result to (3.5), we obtain the following result: 

σ𝑆𝑛 = σ𝑆
𝑡𝑛

2𝑛 + 1
,     𝑛 = 0,1,… , ∞,  𝑡 ≤ 1.                                                                            (3.6) 

Using (3.2) in (3.1) to get an appropriate solution of (3.1) is a traditional way. Using the fact 

that 𝜓(𝑧, 𝑥) has an azimuthal symmetry, we obtain  

𝑥
𝑑𝜓(𝑧, 𝑥)

𝑑𝑧
+ 𝜎𝑡𝜓 𝑧, 𝑥 −

σ𝑆
𝜋

  
𝑢𝐾 2𝑢 𝜓(𝑧,𝑦)

 𝑡 1− 𝑥2 (1− 𝑦2)
 𝑑𝑦 =

1

−1

𝑄 2,                                  (3.7) 

Where 𝑢 =  𝑡 1− 𝑥2 (1− 𝑦2) (1− 2(𝑥𝑦 −   1− 𝑥2  1− 𝑦2  )  𝑡 + 𝑡2  and the 

particular solution of (3.7) is a constant, that is 𝜓𝑃 𝑧, 𝑥 = 𝐴,  where 𝐴 is a constant to be 

determined. Inserting 𝜓𝑃 𝑧, 𝑥 = 𝐴 in (3.7) and using the value of the integration 

 
𝑢𝐾 2𝑢 𝑑𝑥

 𝑡 1− 𝑥2 (1− 𝑦2)
 

1

−1

=  
𝑢𝐾 2𝑢 𝑑𝑦

 𝑡 1 − 𝑥2 (1− 𝑦2)
 

1

−1

= 𝜋                                                  (3.8) 

In (3.7) we find the particular solution as  

𝜓𝑃 𝑧, 𝑥, 𝑡 = 𝐴 =
𝑄

2(σ𝑇−σ𝑆)
,−𝐿 ≤ 𝑧 ≤ 𝐿,−1 ≤ 𝑥, 𝑡 ≤ 1.                                                  (3.9) 

For the solution of homogeneous part of (3.7) we suggest the following ansatz 

𝜓𝑃 𝑧, 𝑥, 𝑣, 𝑡 = 𝐻 𝑥, 𝑣, 𝑡 exp −σ𝑇𝑧 𝑣  ,−𝐿 ≤ 𝑧 ≤ 𝐿,−1 ≤ 𝑥, 𝑡 ≤ 1,  𝑣 > 1.            (3.10)  

Here, 𝐻(𝑥, 𝑣, 𝑡) is the angular part of the angular flux to be determined. Inserting (3.10) in 

the homogeneous part of (3.7) and arranging the resulting equation we find 
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𝐻 𝑥, 𝑣, 𝑡 =
𝑣𝑐0

𝜋 𝑣 − 𝑥 
 

𝐾 𝑘 

 𝑎 − 𝑏

1

−1

𝐻 𝑦, 𝑣, 𝑡 𝑑𝑦, 𝑐0 = σ𝑆 σ𝑇 ,−1 ≤ 𝑥, 𝑡 ≤ 1,  𝑣 > 1           (3.11) 

Where 𝑎, 𝑏 and 𝑘 are defined before. 

Fredholm integral equation of the second kind is defined as  

𝜙 𝑥 = 𝑓 𝑥 + 𝜆  𝐾 𝑥, 𝑦 𝜙 𝑦 𝑑𝑦.
𝛽

𝛼

                                                                                      (3.12) 

If we compare (3.11) with (3.12), we draw the conclusion that (3.11) is a Fredholm integral 

equation of second kind with 𝜆 = 1,𝛼 = −1,𝛽 = 1 and 𝑓 𝑥 = 0 

In this paper, we do not make effort to solve the integral Eq. (3.11), but for the solution we 

present some hints. For instance, if we set 𝑡 = 0 in (3.11) we find a quite simple integral 

equation: 

𝐻 𝑥, 𝑣 =
𝑣𝑐0

2 𝑣 − 𝑥 
 𝐻 𝑦, 𝑣 𝑑𝑦,

1

−1

    𝑥 ≤ 1,    𝑣 > 1                                                        (3.13) 

This integral equation appears in the reactor physics when the medium, in which the 

neutrons are diffusing, is isotropic. Here 𝑣 and 𝐻(𝑥, 𝑣) are known as discrete eigenvalues 

and eigenfunctions, respectively. Solution of (3.13) becomes quite simple if we choose the 

normalization condition as 

 𝐻 𝑦, 𝑣 𝑑𝑦
1

−1

= 1                                                                                                                         (3.14) 

And using this in (3.13) we find  

𝐻 𝑥, 𝑣 =
𝑣𝑐0

2 𝑣 − 𝑥 
 ,  𝑥 ≤ 1,    𝑣 > 1                                                                                   (3.15) 

And using the eigenfunction in (3.14) we find the eigenvalue equation for the isotropic 

scattering as  

𝑣𝑐0

2
 𝐼𝑛  

𝑣 + 1

𝑣 − 1
 = 1,    𝑣 > 1                                                                                                  (3.16)  

To derive more general eigenvalue equation we can use (3.11). By using (2.6) in (3.11) we 

obtain  

𝐻 𝑥, 𝑣, 𝑡 =
𝑣𝑐0

2 𝑣 − 𝑥 
  𝑡𝑛𝑃𝑛

∞

𝑛=0

 𝑥  𝑃𝑛

1

−1

 𝑦 𝐻 𝑦, 𝑣, 𝑡 𝑑𝑦,      𝑥, 𝑡 ≤ 1,    𝑣 > 1           (3.17) 

Multiplying both sides of (3.17) by (𝑣 − 𝑥)𝑃𝑚 (𝑥) and integrating over 𝑥 in the interval 

[−1, 1] we obtain  

 𝑛 + 1 𝛼𝑛+1 𝑣, 𝑡 − 𝑣 2𝑛 + 1 𝛼𝑛 𝑣, 𝑡 + 𝑛𝛼𝑛−1 𝑣, 𝑡 = −𝑣𝑐0𝑡
𝑛𝛼𝑛 𝑣, 𝑡                 (3.18) 
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Where we define a new function 𝛼𝑛 𝑣, 𝑡  as 

𝛼𝑛 𝑣, 𝑡 =  𝑃𝑛

1

−1

 𝑦 𝐻 𝑦, 𝑣, 𝑡 𝑑𝑦,                                                                                         (3.19) 

For which the case 𝑛 = 0 is the normalization condition given by 

𝛼0 𝑣, 𝑡 = 1 =  𝐻 𝑦, 𝑣, 𝑡 𝑑𝑦,
1

−1

                                                                                           (3.20) 

A few 𝛼𝑛 𝑣, 𝑡  can be obtain, using (3.18) as   

𝛼0 𝑣, 𝑡 = 1                                                                                                                                  (3.21) 

𝛼1 𝑣, 𝑡 = 𝑣 1− 𝑐0                                                                                                                   (3.22) 

𝛼2 𝑣, 𝑡 =
𝑣2

3
 3− 𝑐0𝑡   1− 𝑐0 −

1

2
                                                                                    (3.23) 

To obtain (3.18) we used the orthogonality relation of Legendre polynomial defined as  

 𝑃𝑛

1

−1

 𝑥 𝑃𝑚 𝑥 𝑑𝑥 =
2𝛿𝑛𝑚

2𝑛 + 1
 

4. CONCLUSION 

This paper involves the application of useful properties of Legendre polynomial to the 

neutron transport equation. In order to obtain the appropriate solution of neutron transport 

equation, the suitable scattering function of the neutron must be defined. All these 

coefficients i.e. 𝜎𝑆𝑛 ′𝑠 are connected to one parameter with the help of equation (3.6). 

Hence, it is possible to calculate numerically the coefficients of  𝜎𝑆𝑛 ′𝑠. By defining a new 

scattering Kernel we can demonstrate the theoretical scheme for the solution of one group 

and one-dimensional neutron transport equation. 
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