" ANALYSIS OF ELECTROCHEMICAL BEHAVIOUR OF SOME SIGNIFICANT INORGANIC COMPLEXES"

K. Kumar and D.K. Dwivedi

Deptt. of Chemistry,Pt. S.N.S. Govt. PG College Shahdol
(A.P.S. University Rewa, M. P).

Abstract

The electrochemical behavior of any complex provides us various information about the studying complexes and the potentiometry is an important method to analyzing the electrochemical behavior and equilibria of interaction of metal ions with complexing agent where there is a release of hydrogen ions accompanying the complexation reaction and glass electrode furnishes information on the hydrogen ion concentration and thereby on the extent of complex formation.

Keywords: Electrochemical Behavior, ORIGIN, SCOGS. Potentiometry, Complexing agent.
INTRODUCTION: Inorganic complexes has great significance for humanand covered several field of their life.In the present paper we study and analyze the electrochemical behavior of biologically significant complexes of highly toxic metal divalent mercury and cadmium with four different complexing agent 2- amino 3-(4-hydroxyphenyl) propanoic acid,(2-AHPPA), 2 -aminosuccnic acid (2-ASA) used in chronic fatigue, enhancing immune system and protectfrom neural and brain disorder while the 5 -methyl uracil($5-\mathrm{MU}$) is the first pyrimidine to be purified from a natural source, and the 2, 4-dihydroxypyrimidine (2,4DHP)isa planar, unsaturated pyrimidine base which was isolated from the hydrolysis of yeast nuclein ${ }^{1}$ that was found in bovine thymus and spleen, herring sperm, and wheat germ. ${ }^{2}$ and have the ability to absorb the light ${ }^{3}$.

MATERIALS AND EXERIMENTAL PROCEDURES:

In the present investigations we study the electrochemical behaviorof several binary and ternary systems bypH-metry using Bjerrum's'method which was modified by Irving \& Rossoti ${ }^{5-6}$ and pH meter having a reproducibility of ± 0.01 with a glass electrodecalibrated with buffer solutions of $\mathrm{pH}(4.0)$ and $\mathrm{pH}(9.2)$ while the standardization were done with the help of EDTA titration ${ }^{7}$ procedure. An immense amount of equilibrium data is available in different volumes published by Martell ${ }^{8,9}$ and Smith ${ }^{10}$.

Solutions for Study of Electrochemical Behavior of Various Species:

Acid Solution: $5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$
Ligand (A) Solution: $5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL}$ 2-AHPPA (A) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Ligand (A) Solution: $5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL} 2$-ASA (A) (0.01M) $+\mathrm{H}_{2} \mathrm{O}$

Ligand (B) solution: $5 \mathrm{~mL} \mathrm{NaNO} 3(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL}-5-\mathrm{MU}$ (B) (0.01 M) $+\mathrm{H}_{2} \mathrm{O}$

Ligand (B) solution: $5 \mathrm{~mL} \mathrm{NaNO} 3(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL}-2,4-\mathrm{DHP}$ (B) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Binary Solution: I - $5 \mathrm{~mL} \mathrm{NaNO} 3(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL} 2-\mathrm{AHPPA}$ (A) $(0.01 \mathrm{M})+$ 5 mLCd (II) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Binary Solution:II- $5 \mathrm{~mL} \mathrm{NaNO} 3(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL} 2-\mathrm{ASA}(\mathrm{A})(0.01 \mathrm{M})+5 \mathrm{~mL}$ Hg (II) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Binary Solution:III - $5 \mathrm{~mL} \mathrm{NaNO} 3(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL} 5-\mathrm{MU}(\mathrm{B})(0.01 \mathrm{M})+5 \mathrm{~mL}$ Cd (II) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Binary Solution:IV- $5 \mathrm{~mL} \mathrm{NaNO}_{3}(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL} 2,4-\mathrm{DHP}(\mathrm{B})(0.01 \mathrm{M})+$ 5 mLHg (II) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Ternary Solution: (1:1:1): $5 \mathrm{~mL} \mathrm{NaNO} 3(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL} 2-A H P P A(A)$ $(0.01 \mathrm{M})+5 \mathrm{~mL} \mathrm{Cd}$ (II) $(0.01 \mathrm{M})+5 \mathrm{~mL} 5-\mathrm{MU}$ (B) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

Ternary Solution: (1:2:2): $5 \mathrm{~mL} \mathrm{NaNO} 3(1.0 \mathrm{M})+5 \mathrm{~mL} \mathrm{HNO}_{3}(0.02 \mathrm{M})+5 \mathrm{~mL} 2-\mathrm{ASA}$ (A) $(0.01 \mathrm{M})+5 \mathrm{~mL} \mathrm{Hg}$ (II) $(0.01 \mathrm{M})+5 \mathrm{~mL} 2,4-\mathrm{DHP}$ (B) $(0.01 \mathrm{M})+\mathrm{H}_{2} \mathrm{O}$

RESULTS AND DISCUSSION:

The above set of solutions were treated through potentiometric technique of analysis and after aimed study thetitration curves were plotted by taking pH value of acid, ligand, binary and ternary complexes vs. volume of NaOH and species distribution curves were plotted by taking percent (\%) concentration of the species against pH and the stability constant have been studied through SCOGS ${ }^{11-13}$ (Stability constant of generalized species) computer
programme andORIGIN 6.0 was used for graphical representation of all investigated species.

Table - 1
Cd (II)-2-AHPPA (A) - 5-MU (B) (1:1:1) System

Volume of $\mathrm{NaOH}(\mathrm{mL})$	pH			
	A	B	C	D
0.0	2.52	2.74	2.88	3.59
0.2	2.62	2.86	3.05	7.10
0.4	2.73	3.04	3.32	8.10
0.6	2.87	3.37	4.18	8.48
0.8	3.11	5.84	7.79	8.86
1.0	3.65	8.68	8.47	9.16
1.2	9.70	9.20	8.93	9.34
1.4	10.29	9.61	9.17	9.48
1.6	10.53	9.95	9.38	9.62
1.8	10.68	10.20	9.61	9.78
2.0	10.79	10.39	9.84	9.96
2.2	10.88	10.54	10.06	10.16
2.4	10.95	10.66	10.27	10.34
2.6	11.00	10.75	10.40	10.52
2.8	11.05	10.83	10.57	10.67
3.0	11.10	10.89	10.72	10.79
3.2	11.14	10.95	10.85	10.90
${ }^{\prime} 3.4$		10.99	10.95	11.00
3.6		11.04	11.03	
3.8		11.07	11.10	
4.0		11.10	11.17	

Table -2
Hg (II)- 2-ASA (A) - 2,4-DHP (B) (1:2:2) System

$\begin{aligned} & \hline \text { Volume of } \\ & \mathrm{NaOH}(\mathrm{~mL}) \end{aligned}$	pH			
	A	B	C	D
0.0	2.52	2.61	2.63	2.84
0.2	2.62	2.72	2.77	2.87
0.4	2.73	2.85	2.92	2.91
0.6	2.87	3.02	3.12	2.96
0.8	3.11	3.26	3.40	3.00
1.0	3.65	3.60	3.80	3.06
1.2	9.70	4.20	4.42	3.12
1.4	10.29	8.54	5.36	3.19
1.6	10.53	9.40	6.09	3.26
1.8	10.68	9.89	6.70	3.36
2.0	10.79	10.24	7.41	3.46
2.2	10.88	10.47	9.07	3.58
2.4	10.95	10.63	9.70	3.73
2.6	11.00	10.74	10.04	3.89
2.8	11.05	10.83	10.27	4.02
3.0	11.10	10.91	10.43	4.24
3.2	11.14	10.97	10.56	4.52
3.4			10.66	5.00
3.6			10.74	6.74
3.8			10.81	6.85
4.0			10.87	7.15
4.2			10.92	7.26
4.4			10.97	7.49
4.6			11.00	
4.8			11.04	

Fig. 1- Potentiometric titration Curves of 1:1:1 Cd (II) - 2-AHPPA(A)- 5-MU(B) System (A) Acid (B) Ligand (C) Cd(II)- 2-AHPPA (D)Cd(II)- AHPPA -5-MU

Fig. 2- Potentiometric titration Curves of 1:2:2 Hg (II) - 2-ASA (A)- 2, 4-DHP (B)System
(A) Acid (B) Ligand (C) Hg (II)- 2-ASA (D) Hg (II)- ASA - 2, 4-DHP

Cd (II)-2-AHPPA (A)-5-MU (B)(1:1:1) System

For the present system species distribution curves were given in fig.3. and the major complex is ternary complex of CdAB having the maximum concentration of $\sim 98 \%$ at the pH ~ 9.7. The curve shows that binary complex of CdB attains the maximum concentration \sim 94% at start of the titration which gradually decreases with increase in pH value. Protonated ligand species $\mathrm{H}_{3} \mathrm{~A}, \mathrm{H}_{2} \mathrm{~A}$, HA and BH are present in good concentration among these $\mathrm{H}_{2} \mathrm{~A}$ have maximum concentration $\sim 96 \%$ at start of the titration. Hydroxo species $\mathrm{Cd}(\mathrm{OH})_{2}$ also seen in this system.

Hg (II)-2-ASA (A) - 2, 4-DHP(B) (1:2:2) System

From the species distribution curves which is given in fig- 4 it is clear that the binary complex of Hg A exist in concentration $\sim 20 \%$ at $\mathrm{pH} \sim 3.3$. Another binary complex Hg B shows its concentration $\sim 57 \%$ at the $\mathrm{pH} \sim 3.0$. and the ternary complex of Hg AB exist with higher value having maximum concentration $\sim 92 \%$ at higher $\mathrm{pH} \sim 7.3$. Protonated ligand species $\mathrm{H}_{3} \mathrm{~A}, \mathrm{H}_{2} \mathrm{~A}$, HA and BH shows their remarkable presence. Hydroxo species also existed in this system.

Fig-3-Distribution Curves of (1:1:1) Cd(II)-2-AHPPA(A) - 5-MU(B) System (1) $\mathrm{Cd}^{2+}(2) \mathrm{H}_{3} \mathrm{~A}$ (3) $\mathrm{H}_{2} \mathrm{~A}(4) \mathrm{HA}(5) \mathrm{BH}(6) \mathrm{Cd}(\mathrm{OH})_{2}(7) \mathrm{Cd} \mathrm{B}(8) \mathrm{Cd} \mathrm{AB}$

Fig 4－Distribution Curves of（1：2：2）Hg（II）－2－ASA（A）－2，4－DHP（B）System \backslash

$$
\text { (1) } \mathrm{Hg}^{2+} \text { (2) } \mathrm{H}_{3} \mathrm{~A}(3) \mathrm{H}_{2} \mathrm{~A} \text { (4) } \mathrm{HA}(5) \mathrm{BH}(6) \mathrm{Hg}(\mathrm{OH})_{2}(7) \mathrm{Hg} \mathrm{~A}(8) \mathrm{HgB} \text { (9) } \mathrm{HgAB}
$$

Formation of binary complexes：

$\mathrm{Cd}^{++}+2$－AHPPA $\left(\mathrm{H}_{2} \mathrm{~A}\right) \quad$ ¢Cd－2－AHPPA］$+2 \mathrm{H}^{+}$
$\mathrm{Cd}^{++}+5-\mathrm{MU}\left(\mathrm{BH}^{-}\right)$［C己⿱⿰㇒一乂二－， $\left.5-\mathrm{MU}\right]+\mathrm{H}^{+}$
$\mathrm{Hg}^{++}+2-\mathrm{ASA}\left(\mathrm{H}_{2} \mathrm{~A}\right) \quad[\mathrm{Hg}-2-\mathrm{ASA}]+2 \mathrm{H}^{+}$
$\left.\mathrm{Hg}^{++}+2,4-\mathrm{DHP}\left(\mathrm{BH}^{-}\right) \leftrightharpoons \mathrm{Hg}-2,4-\mathrm{DHP}\right]+\mathrm{H}^{+}$

Formation of Ternary complexes：

［Cd－2－AHPPA］＋ $\mathrm{BH}^{-} \leftrightharpoons$［Cd－2－AHPPA－，5－MU］＋ H^{+}
$\mathrm{Cd}^{++}+2-\mathrm{AHPPA}\left(\mathrm{H}_{2} \mathrm{~A}\right)+5-\mathrm{MU}\left(\mathrm{BH}^{-}\right) \quad \leftrightharpoons[\mathrm{Cd}-2-\mathrm{AHPPA}-5-\mathrm{MU}]+3 \mathrm{H}^{+}$
［Hg－2－ASA］$+\mathrm{BH}^{-} \leftrightharpoons$［Hg－2－ASA－，2，4－DHP $+\mathrm{H}^{+}$
$\left.\mathrm{Hg}^{++}+2-\mathrm{ASA}\left(\mathrm{H}_{2} \mathrm{~A}\right)+2,4-\mathrm{DHP}\left(\mathrm{BH}^{-}\right) \leftrightharpoons \mathrm{Hg}-2-\mathrm{ASA}-2,4-\mathrm{DHP}\right]+3 \mathrm{H}^{+}$
The equation for stability constants or $\log \beta$ value（ $\beta_{\mathrm{p} / \mathrm{qrst}}$ ）of（1：1：1）Cd－2－AHPPA－ 5－MU ternary species given as：
$\mathrm{p}\left(\mathrm{Cd}^{++}\right)+\mathrm{r}(2-\mathrm{AHPPA})+\mathrm{s}(5-\mathrm{MU})+\mathrm{t}(\mathrm{OH}) \quad \leftrightharpoons\left(\mathrm{Cd}^{++}\right)_{\mathrm{p}}\left((2-\mathrm{AHPPA})_{\mathrm{r}}(5-\mathrm{MU})_{\mathrm{s}}(\mathrm{OH})_{\mathrm{t}}\right.$

$$
\left.\left[\mathrm{Cd}^{++}\right)_{\mathrm{p}}(2-\mathrm{AHPPA})_{\mathrm{r}}(5-\mathrm{MU})_{\mathrm{s}}(\mathrm{OH})_{\mathrm{t}}\right]
$$

$\underset{\left.\left[C d^{++}\right)\right]^{\mathrm{P}}[2-\mathrm{AHPPA}]^{\mathrm{r}}[5-\mathrm{MU}]^{\mathrm{s}}[\mathrm{OH}]^{\mathrm{t}}}{\beta_{\mathrm{p} / \mathrm{rst}}}$

The equation for stability constants or $\log \beta$ value $\left(\beta_{\mathrm{p} / \mathrm{qrst}}\right)$ of $(\mathbf{1}: \mathbf{2}: 2) \mathrm{Hg}-2$－ASA－2，4－ DHPternary species given as：
$\mathrm{p}\left(\mathrm{Hg}^{++}\right)+\mathrm{r}(2-\mathrm{ASA})+\mathrm{s}(2,4-\mathrm{DHP})+\mathrm{t}(\mathrm{OH}) \quad \leftrightharpoons\left(\mathrm{Hg}^{++}\right)_{\mathrm{p}}\left((2-\mathrm{ASA})_{\mathrm{r}}(2,4-\mathrm{DHP})_{\mathrm{s}}(\mathrm{OH})_{\mathrm{t}}\right.$

$$
\begin{aligned}
& \beta_{\mathrm{p} / \mathrm{qrst}}=\frac{\left.\left[\left(\mathrm{Hg}^{++}\right)_{\mathrm{p}}(2-\mathrm{ASA})_{\mathrm{r}} 2,4-\mathrm{DHP}\right)_{\mathrm{s}}(\mathrm{OH})_{\mathrm{t}}\right]}{\left.\left[\mathrm{Hg}^{++}\right)\right]^{\mathrm{p}}[2-\mathrm{ASA}]^{\mathrm{r}}[2,4-\mathrm{DHP}]^{\mathrm{s}}[\mathrm{OH}]^{\mathrm{t}}}
\end{aligned}
$$

$\beta=$ stability constant, $p=M_{1, r}, r$ primary ligand, $s=$ secondary ligand, $t=$ hydroxo species.

Overall stability constants and other related constants of binary and ternary complexes

for Cd (II) 2-AHPPA(A) - 5-MU(B) (1:1:1) system.

- Proton-ligand formation constant $\left(\log \beta_{00 r 0 t} / \log \beta_{000 s t}\right)$ of 2 -AHPPA $-5-\mathrm{MU}$ at 37 $\pm 1^{0} \mathrm{C} \quad \mathrm{I}=0.1 \mathrm{NaNO}_{3}$

Complex	$\log \beta_{00 \mathrm{rot}} / \log \beta_{000 \mathrm{st}}$
$\mathrm{H}_{3} \mathrm{~A}$	21.35
$\mathrm{H}_{2} \mathrm{~A}$	19.18
HA	10.14
BH	9.94

- \quad Hydrolytic constants M^{2+} (aq.) ions $\left(\log \beta_{\mathrm{p} 000 \mathrm{t}} / \log \beta_{0 \mathrm{q} 00 t}\right.$).

Complex	Cd
$\mathrm{M}(\mathrm{OH})^{+}$	-6.89
$\mathrm{M}(\mathrm{OH})_{2}$	-14.35

- Metal-Ligand constants $\left(\log \beta_{\mathrm{p} 0 \mathrm{r} 00} / \log \beta_{0 q \mathrm{qrOO}} / \log \beta_{\mathrm{poOso}} / \log \beta_{0 q 050}\right)$ Binary System

Complex	Cd
MA	3.57
MB	11.33

- Metal-Ligand constants $\left(\log \beta_{\mathrm{pors} 0} / \log \beta_{0 \mathrm{qrs} 0}\right)$: Ternary $\operatorname{System}(1: 1: 1)$

Complex	Cd
MAB	16.95

Overall stability constants and other related constants of binary and ternary complexes
for $\mathrm{Hg}($ II) 2-ASA (A)-5-MU(B) (1:2:2) system.

- Proton-ligand formation constant ($\log \beta_{000 \mathrm{rot}} \log \beta_{000 \mathrm{st}}$) of 2-ASA - 5-MU at $37 \pm 1^{0} \mathrm{C}$, $\mathrm{I}=0.1 \mathrm{NaNO}_{3}$

Complex	$\log \beta_{00 \mathrm{rot}} / \log \beta_{\text {000st }}$
$\mathrm{H}_{3} \mathrm{~A}$	15.26
$\mathrm{H}_{2} \mathrm{~A}$	13.33
HA	9.63
BH	9.94

- Hydrolytic constants $\left(\log \beta_{\mathrm{p} 000 \mathrm{t}} / \log \beta_{0 \mathrm{q} 00 \mathrm{t}}\right) \mathrm{M}^{2+}$ (aq.) ions.

Complex	$\mathbf{H g}$
$\mathrm{M}(\mathrm{OH})^{+}$	-3.84
$\mathrm{M}(\mathrm{OH})_{2}$	-6.38

- Metal-Ligand constants $\left(\log \beta_{\mathrm{p} 0 \mathrm{r} 00} / \log \beta_{0 q \mathrm{rro}} / \log \beta_{\mathrm{poOso} 0} / \log \beta_{0 q 0 \mathrm{os} 0}\right)$ Binary System

Complex	Hg
MA	13.09
MB	13.45

- Metal-Ligand constants $\left(\log \beta_{\mathrm{p} 0 \text { rso }} / \log \beta_{0 \mathrm{qro} 0}\right):$ Ternary $\operatorname{System}(1: 2: 2)$

Complex	Hg
MAB	21.85

Proposed Structure of Binary and Ternary Complexes:

Hg (II)-2-ASA

Cd (II)-2-AHPPA-5-MU

Hg (II)-2-ASA-2,4-DHP

CONCLUSION:

From the above study we can say that potentiometric technique of analysis gives us most of the information about the metal-ligand interaction and formation of various binary, ternary, protonated ligand species $\mathrm{H}_{3} \mathrm{~A}, \mathrm{H}_{2} \mathrm{~A}, \mathrm{HA}, \mathrm{BH}$, monohydroxo and dihydroxospecies andequilibriaas well as electrochemical behavior of investigated inorganic complexes.

REFERENCES:

1. G.M. Blavakburn, and Gait 'Nucleic acid in chemistry and Biology' IRL Press, Oxford, M.J. eds (1990)
2. D.J. Brow 'Heterocyclic compounds The Pyrimidines'New York: Interscience, 52 (1994)
3. Horton, Robert H., et.al. Principles of Biochemistry', $3^{\text {rd }}$ ed. Upper Suddle River, N.J. Prentice Hall (2002)
4. Bjerrum.J, "Metal Amine Formation in Aqueous Solution". P. Masse \&. Sons Copenhagen. (1941).
5. H. M. lrving and. H.S. Rossetti, J. Chem. Soc... 3397 (1953)
6. H. M. lrving, and H.S. Rossetti, J. Chem. Soc... 2904 (1954)
7. Welcher F.J. "The analytical uses of ethylenediaminetetraacetic acid" D.VanNostarand Company, New York P. 169 (1957)
8. L.G. Sillen and A.E. Martell, Stability constants of metal ion complexes, Special publication No. 17 (The Chemical Society, London) (1964).
9. L.G. Sillenand A.E. Martell, Stability constant. of metal ion complexes, Special Publication No. 21(The Chem. Soc. London) (1971).
10. A.E. Martell and R.M. Smith, Critical stability constants (Plenum Press, New York), Vols. 1-6 (1974-1989) .
11. I.G. Sayce, Talanta, 15, 1397-1411. (1968)
12. I.G. Sayce, Talanta, 18, 653. (1970)
13. I.G. Sayce, and V.Sharma, Talanta, 19, 831. (1972)
