
 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 5

A PERMISSION BASED DISTRIBUTED GROUP MUTUAL EXCLUSION

ALGORITHM HAVING QUALITY OF SERVICE

DR. PAWAN K THAKUR1 AND VIVEK CHAUDHARY2

1. Associate Professor, Department of Computer science and Engineering,

 Govt. College Dharamshala, H.P. (India) pawansarkaghat@gmail.com

2. Research Scholar , Career Point University, Kota , Rajasthan; viveksalil@gmail.com

ABSTRACT

In large distributed systems which are based on cloud computing, the resources are shared

to the clients. In these systems , there must be some service level agreement between the

clients and the provider of the service. In Quality of Service, some constraints such as

priority, response time and fault tolerance must be taken into consideration.

In this paper , we present a permission based group mutual distributed algorithm. The group

mutual distributed algorithm is a generalization of mutual exclusion problem. In group

mutual exclusion algorithm, processes in the same group can enter the critical section

simultaneously.

Keywords: Cloud computing, Quality of Service, Group mutual exclusion.

1.0 Introduction

Cloud computing model provide on-demand network access to shared resources[4]. The

services of cloud computing are hosted on a series of virtual machines running over the

physical machines. The property of cloud elasticity must be fulfilled. The cloud elasticity is

the ability to provide the cloud resources to different processes dynamically. In large

distributed systems which are based on cloud computing, the resources are shared to the

clients. There must be some Service Level Agreement between the clients and service

provider. In SLA, the QoS[10] is the main issue. The changing needs of the cloud computing

must be taken into consideration. The new properties of cloud computing such as scalability,

fault tolerance and QoS must be considered while developing the new algorithm. Since

applications in cloud computing share resources, concurrent access to them might be critical

in order to avoid inconsistencies. These resources are considered as critical section and

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 6

concurrent access to these resources must be done carefully and some mutual exclusion

algorithm must be there.

The three basic approaches for implementing distributed mutual exclusion are used. These

are: Token based approach[2][8][16], Non token based approach[6][7][14][20] and Quorum

based approach[5][17][18].

In token based approach, a logical token representing the access right to the shared

resource is passed in a regulated manner among the sites. The site who is having the token

is allowed to enter the critical section. Mutual exclusion is ensured because the token is

unique. The algorithms based on this approach have to search the token .These types of

algorithms provide better message complexity and easy to extend but the loss of token is

the bottleneck .

In non token based approach , each site freely and equally competes for the right to use the

shared resource. The message are used among the sites to determine which site will enter

the critical section. A site enters the critical section when an assertion, defined on its local

variables become true. The assertion becomes true only at one site at a given time and it

ensures the mutual exclusion. These type of Algorithms are fault tolerant but at the cost of

increased message complexity.

In quorum based approach, each site request permission to execute the critical section

from a subset of sites. This set of sites is called quorum. Any two quorums contains a

common site. This common site is responsible to make sure that only one request executes

the critical section at any time. These type of Algorithm have lesser message complexity

because they have to take permission from the subset and not from all the processes in the

system but the problem of creating and initialization of quorum is there.

The most of the current mutual exclusion algorithms are not suitable for cloud computing

because they do not consider cloud characteristics such as Quality of Service and fault

tolerance. There are some algorithms which provide QoS [4][9][11][12]. In this paper we will

present a group mutual algorithm which consider QoS based on Service Level agreement.

The QoS requirement is important for any application because they are recorded between

customers and the system designers. Any violation from QoS can lead to customer

dissatisfaction. The QoS defined in our algorithm is priority , waiting time and response time.

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 7

2.0 Related Work:

The problem of GME was firstly given by Yuh-Jeer Joung[25]. Joung proposed two different

algorithm for GME. These are Joung’s broadcast based algorithm[23] and Joung’s quorum

based algorithm[24]. Joung’s broadcast based algorithm was an extension of Ricart and

Agarwala distributed mutual exclusion algorithm[20]. Joung proposed two algorithms RA1

and RA2. In RA1, the process which wants to enter the critical section , sends a request

message to all the processes and upon receiving reply message from all the processes, it

enters the critical section. There are some concurrency related issues in RA1, which was

later solved by using RA2. In Joung’s quorum based algorithm , the concept of quorum is

used. A process has to obtain permission from all the processes in the quorum to enter

critical section. For concurrency, Joung proposed two algorithms , the first one is

Maekawa_M, which sends message in parallel and second one is serial version called

Maekawa_S, which obtains sequential permission from each process in quorum. These two

algorithms avoids deadlock .

In comparison to classical distributed systems , the working in cloud computing is different

because it deals with different characteristics . The different characteristics in cloud

computing includes fault-tolerance, QoS, scalability and priority. There are different priority

based algorithms which are used for real time systems. These can be categorized as :

(i)Static priority algorithms (ii) Dynamic priority algorithms.

The priority in static priority algorithms remains the same. There is no priority inversions but

it can lead to starvation as low priority processes cannot be able to enter the critical section.

Housni and trehel[8] proposed an algorithm where sites with same priority forms the group.

It uses router for external communication and the processes within the group communicate

with each other by passing messages. When any process wants to enter the critical section,

it sends the request and that request is forwarded to the root. The root sends the token

request to the routers. In each group , the Raymond algorithm[19] is used.

In dynamic priority algorithms, the priority of algorithm is increased with the passage of

time. For increasing the priorities , different factors such as request time, level and distance

are used in different algorithms. In Kanrar-Chaki[10] token based algorithm , which is based

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 8

on Raymond algorithm[19], the low priorities of pending requests are increased dynamically.

In avoids starvation but increases priority inversions. Jonathan Lejeunl et al[12] proposed a

token based algorithm where new concepts have been added in Kanrar-Chaki[10] token

based algorithm. These are level heuristics and level distance heuristics. Level heuristics

postpones the priority increment of pending requests. In level distance heuristics , the

processes are incremented according to the level of the tree. These two heuristics removes

the drawbacks of the Kanrar-Chaki[10] token based algorithm where the low priority

processes frequently access the critical section which is priority inversion. In priority

inversions, a low priority process has been granted the access to critical section before the

high priority process which is violation of Service Level Agreement. Jonathan Lejeunl et al[13]

proposed a new algorithm where the attempt is balance the priority inversions and

response time of low priority processes. It uses the awareness concept which aims at

reducing maximum response time whereas the number of priority inversions remains low.

For this global view of pending requests is necessary.

3.0 System Model:

The distributed system consists of set of n processes and a set of communication channels.

The distributed system is asynchronous and does not have global clock. Information is

exchanged between different processes by passing message asynchronously. We have

assumed that message delay is finite and processes are non faulty and channels are reliable.

3.1 Group mutual exclusion problem:

The problem of GME was firstly given by Yuh-Jeer Joung[18]. In GME problem the processes

which are competing for the critical section , must be placed in the request queue. From the

request queue the group will be assigned to the process after considering the different

factors such as waiting time, execution time , priority , age and group size. If a process has

been granted the privilege message of a particular type, then this process will grant the

requests of different processes of the same type. If there are n processes of the same type,

then n processes can enter the critical section.

Group mutual exclusion satisfies the following properties:

Safety: This property states that there will be only one privileged message in the

system. At any time , the number of privileged message should not exceed more

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 9

than one which further states that if the two processes are of different group, then

they cannot enter the critical section simultaneously.

Liveliness: This property ensures that every process gets a chance to enter the

critical section and it avoids unnecessary blocking and starvation.

Concurrent entry: If the processes belongs to the same type, then they can enter

the critical section concurrently.

3.2 Performance metrices:

Message Complexity: It is the number of messages required to enter the critical

section by any process.

Concurrency: it is the number of processes which are in the critical section at a given

time.

Synchronization delay: It is the time when process from the current session exits

from the critical session and next process from the different session enters the

critical section.

4.0 A permission based distributed group mutual exclusion algorithm having Quality of

Service:

In this section , we will present a permission based distributed group mutual exclusion

algorithm having QoS considering the different factors such as waiting time, priority and

execution time. Our algorithm solves the critical section problem for distributed group

mutual exclusion and also provide QoS.

4.1 Outline:

It is a permission based distributed group mutual exclusion algorithm in which different

processes communicate by message passing. The root node has all the authority and it

maintain information regarding all the processes. The root node maintains the global view

of all the processes. When child node requests for the critical section , its value Vi(t) is

calculated . This value is based on waiting time, priority and execution time of the process.

This request is forwarded to the parent node along with Vi(t) value and from parent node to

the root node. The parent node maintains all the information about the child nodes in its

local queue. Now at parent node, it is checked whether it is having the privilege message or

not. If the parent node is having the privilege message , it means that this parent node is

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 10

having the authority to grant the requests of a particular type of its child nodes. If the

parent node is not having privilege message or the type of the resource is different , the

request is forwarded to root node. The root node maintains all such information in its global

queue.

The root node maintains a pool of different requests. At the root node , the requests for

critical section of different processes is counted type wise. Then the group will be created

based on number of counts of same types. Now the priority of the different groups are

calculated and these groups of different types are sorted in ascending order. It is explained

in the section “Sorting the global queue”.

The first process in the first group now holds the privilege message. It will act as parent

node and all other nodes will be its child node. The parent node and its child nodes can now

enter the critical section i.e. they can be allowed to use the sharable resources concurrently.

If some high priority process requests for the critical section of different type, the root node

calculates the total priority of that group and checks whether the priority exceeds the

priority of currently executing group. If it is the case then the interrupt message is sent to

the node which is having the privilege message. On receiving the Interrupt message, the

parent node which is having the privilege message will send the Interrupt_ack message after

its child node finishes critical section execution. The root in response to the Interrupt_ack

message will send the privilege message to the first process of different type.

4.2 Sorting the global queue:

In various algorithms , queues are sorted by using FIFO policy. But FIFO policy does not

consider different factors such as waiting time, priority and execution time. These

parameters are important for the applications. We will use the formula which allow us to

insert a new process in request queue. Suppose if Si is requesting the critical section , then

its request will be forwarded to the Sp. If Sp is not having the privilege message, then Si

request will be forwarded to Sr through Sp including its Vi(t) value. Sr will maintain

information about all requests. Here the number of requests of different type will be

counted. Based on largest to smallest count, the groups will be formed. Now the total

priority of groups will be calculated. Suppose if Si is having priority Pi, then its value Vi(t) is

calculated as:

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 11

Vi(t)= *Pi*

Where RWT= LT-(ET+Il+e)

ED= hi-1

pi=Priority of initiator site of request

hi=Initial Lamport stamp

ED= Emission date of request

RWT=Rest of request waiting time

e= treatment time of request at a site.

Il= Intermediate links

Accordingly ,all the values of processes which belongs to the same group will be calculated

and finally the total value is calculated. Now the different groups will be sorted based on

this value.

4.3 Description of the Algorithm:

In this algorithm , five types of messages are used:

Request: When a process send a request to enter into critical section.

Reply: When some process sends reply message to another process.

Exit: When the process releases the critical section.

Privilege: The node which have the authority to grant access to critical section.

Interrupt: When high priority process sends the request and total value of requests

exceeds the current value.

Different cases of the algorithm is discussed.

Case1: When a site Si(Child node) wants to enter the critical section , it defines its expiration

time and execution time in critical section. It then calculates the value Vi(t). Then the

request of Si along with its Vi(t) value is send to the parent node(Sp). At Sp it is checked

whether waiting time has reached or not. If waiting time is reached then this message will

be deleted from the local queue. From the parent node , it is forwarded to root node Sr.

The root node maintains a pool of different requests. At the root node , the requests for

critical section of different processes is counted type wise. Then the group will be created

based on number of counts of different types. Now the value Vi(t) of the different groups

are calculated and these groups of different types are sorted in descending order. If Sp

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 12

belongs to the first group, which is having the highest value and if it is the first process in

that group, then a privilege message is send to the Sp. Sp which is the parent node and all

other processes become the child node of Sp. All these processes can enter the critical

section concurrently. The tree is rearranged dynamically according to these changing values.

Case 2: If some other process Sj of Sp sends a request of same type to enter the critical

section ,then its request is forwarded to the Sp. Since Sp is having the privilege message, it

has the authority to grant the access to Sj directly.

Case 3: If some process Sk sends the request with higher priority and its type is different ,

then its request will be forwarded to the root node. Root node now calculates the total

value of all the processes waiting in the global queue . If this value exceeds the current

value , then interrupt message will be send to the Sp. Sp now send the Interrupt_ack

message to Sr once the processes which have entered the critical section, finished their

execution. Now the reply will be send to Sk, and all the processes in the group including Sk

will enter the critical section.

Case 4: If all the requests of local queue Sp are fulfilled , the Sp will send a exit message and

delete the messages in the local queue. It also returns the privilege message to Sr. On

encountering the exit message , the Sr will remove all the information of that group in the

global queue. Now if second group in the global queue will have the maximum value, then

all the processes of that group can enter into the critical section.

4.4 Pseudo code of the algorithm:

Variables:

pi=Priority of initiator site of request

hi=Initial Lamport stamp

ED= Emission date of request

RWT=Rest of request waiting time

e= treatment time of request at a site.

Il= Intermediate links

S= Maximum number of processes of particular type in Sr

Msg=Message of particular type.

Type= Request of particular type of resource

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 13

Si=Request site

Sc= Current site

Sp=Parent site of current site

Sr= Root site

Lt= Latest timestamp of CS exit

Et= CS execution time

Local_queue= Local queue at parent node

Global queue= Global queue at the root node

Message having the following attributes:

Identification

Vi(Value of Si at a particular site)

Initialization

Procedure init()

 Flag=0

 Granted=0

 Msg=nil

 Local_queue=Ø

 Global_queue=Ø

Procedure Request()

for(i=0;i<=n;i++)

 Count the number of processes of different types.

 Form the groups of similar types.

 Calculate priority of groups.

 Sort the groups in ascending order.

If(Si==p1) and (Msgi==request)

 Send privilege message to p1

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 14

 Else If(Si==g1)and (Si!=root)

 Send message to Sp

 Insert message in local_queue

 Else if (typei!=x)

 Send message to Sr

 Insert message in global_queue

 Else if (msgi==Interrupt)

 Call Interrupt()

 Else

 Reject message

Procedure exit()

 for(i=0;i<=n;i++)

 flag=o

 granted=0

 msgi=exit

 do

 (IdSi==Idmessagei)and(Typei==x)

 Remove message from local_queue

 While(IdSi==IdMessagei)

 If(Sc==root)

 Send message to Sr

 Else

 Send message to Sc

Procedure Process_message()

for(i=0;i<=n;i++)

while(flag==0)

 receive message from Si

 if(msgi==request) and(typei==x) and(wt>t)

 if(Sc==root)

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 15

 insert message in global_queue

 else if (typei!=x)

 send message to Sr

 else if(msg==Interrupt)

 call Interrupt()

 else

 delete message

 if(msgi==reply) and (Typei==x) and (Sp==p1)

 If(Sc==Si)

 Flag=1

 Granted=1

 Enter in CS

 If(msgi==Interrupt) and(Typei!=x) and(Sp==p1)

 If(Sc==Sk)

 Flag=1

 Granted=1

 Enter in CS

 If(msgi==exit)

 Granted=0

 Do

 If(t>RWT) or (IdSi==IdMessagek)

 Remove message from local_queuep

 While(IdSi==IdMessagek)

 If(Sc==root)

 Granted=1

 Send reply message to Sr

 Else

 Send exit message to Sp

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 16

Procedure Interrupt()

 If(Sk==request) and (Vk>Vi)

 Calculate priority of groups

 If(priority(gi)<priority(gk)

 Send interrupt message to Sp of g1

 If(msg==Interrupt)

 Msgi=exit

 Send Interrupt_ack toSk

 Send reply message to Sk

 Call Process_message()

5.0 Theoretical analysis of the algorithm:

This algorithm satisfies safety, liveliness and concurrency properties. Also this algorithm is

starvation free.

Proof of safety:

Assertion: If two processes Pi and Pj are executing the critical section concurrently, then the

session must belong to same type.

Proof: In this algorithm , it is mentioned that only one process will hold the privilege

message. The child of the node which is holding the privilege message will enter the critical

section concurrently. Suppose that if Pi is having the privilege message and Pj requests the

critical section, then type of Pj must be same as that of Pi and it must belong to same group

as Pi, then only Pi will be allowed to enter the critical section. If Pj request type is different,

then it’s request must be forwarded to the root node and at the root node it is decided

whether that the group which Pj belongs will be allowed to enter the critical section or not.

It proves the safety property.

Liveliness:

Assertion: Every process gets a chance to enter the critical section and it avoids unnecessary

blocking.

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 17

In our algorithm, processes of a particular type forms the group. The group will be sorted in

ascending order according to the values calculated in the groups. The value Vi which is

calculated is based on different factors such as waiting time , priority and execution time.

Whenever the total value of another group exceeds the current value, the Interrupt

message will be raised. Also with the passage of time, the value Vi increases. It allows the

low priority processes to enter the critical section.

It proves our liveliness property.

Deadlock does not occur in the system:

Assertion: The different nodes will be in deadlock state when there is no node in the critical

section and all the requests for critical section cannot be fulfilled.

Proof: In our algorithm , if the parent node Sp has the privilege message, then it will send

the exit message when all its children node(including itself) finishes executing the critical

section . There is a mechanisms so that other processes can enter the critical section in a

mutual exclusion manner. Also we have associated a waiting time with the processes and if

the waiting time exceeds , then the messages will be deleted from the local queue. It

ensures that processes will keep on executing the critical section.

Hence deadlock does not occurs in the system.

Starvation free:

Assertion: Assertion: Starvation occurs when one process must wait indefinitely to enter the

critical section even when other processes are entering and exiting critical section.

Starvation is impossible when every request in the critical section is fulfilled.

Proof: In our algorithm , the node does not have to wait for a indefinite time because with

the passage of time , the value Vi(t) increases. If a process sends a request with low priority ,

then at some time it’s value will become high thus having greater chances of entering into

critical section.

Hence our algorithm is starvation free.

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 18

Group mutual exclusion is achieved:

Assertion: Different processes of different groups will be allowed to enter critical section in

a group exclusion manner.

Proof: If two same type processes Pi and Pj requests for the critical section at the same time,

then they will be allowed to enter the critical section. If some other processes of different

type requests for the critical section and their group value exceed the current group value,

then after sending the Interrupt message and getting the Interrupt_ack message , these

processes can enter the critical section.

Concurrency:

Assertion: If two different processes Pi and Pj belongs to the same type, then they can enter

the critical section concurrently.

Proof: From the algorithm, it is established that if two processes Pi and Pj requests the

critical section and their type is same, they will be allowed to enter the critical section.

Performance analysis: In our algorithm, processes require log2(N) request message,

log2(N)reply messages and log2(N) exit messages in the worst case. It also require one

privilege message, one Interrupt message and one Interrupt_ack message. So the worst case

complexity is 3log2(N)+3 messages. In our algorithm , the messages will be deleted or

requests will be cancelled once the waiting time exceeds. It ensures the proper utilization of

the bandwidth and give chance to higher priority processes to enter the critical section.

 Message complexity: 3log2(N)+3 messages

Synchronization delay: The main aim here is to determine the number of message between

exiting of critical section and entering of other process into the critical section. At some time,

a process must leave the critical section. When one group leave the critical section and

sends the exit message, the other group will enter the critical section as soon as it receives

the exit message. So the synchronization delay is one message hop.

Concurrency:

The maximum concurrency of this algorithm is n.

If n processes request the critical section and their type is same then they will be allowed to

enter the critical section simultaneously.

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 19

6.0 Conclusion and future scope:

We have presented a group mutual exclusion algorithm allowing Quality of Service. The

Quality of Service is essential in providing Service Level Agreement between the clients and

service provider. It is one of the requirement in applications such as cloud computing. Our

algorithm is based on group mutual exclusion concept . Here different processes under one

group can access the critical section simultaneously. In this algorithm, the group priority is

calculated which is based on different factors such as waiting time, execution time and

priority of the processes. The requests of the processes whose waiting time is reached will

be deleted from the local queue or the global queue. It saves the bandwidth which can be

used for granting access to high priority processes. In this algorithm , some extra messages

have been used i.e. Privilege, Interrupt and Interrupt_ack message. If some process with

high priority request for the critical section , then it’s request will be forwarded to the root

node . At the root node, the group priority of the requesting process will be calculated. If it

exceed the current value, then an Interrupt message is send to the currently executing

group and after getting the Interrupt_ack message, the processes under that group can

enter the critical section.

In this case we have not considered the case of fault tolerance. Also simulation can be

conducted on this algorithm. These can be considered as future work.

 References:

1. D. Agrawal and A. E. Abbadi, An efficient and fault-tolerant solution for distributed

mutual exclusion, ACM Transactions on Computer Systems, 9(1), 1991, 1–20.

2. D.agarwal,A.El Abbadi,”A token baesd fault tolerant Distributed mutual exclusion

algorithm,journal of parallel and distributed computing,24,pp.164-176,1995.

3. Dijkstra, E.W. Solution of a problem in concurrent programming control. Commun.

ACM 1965, 8, 569.

4. Edmondson, J., Schmidt, D., & Gokhale, A. (2011). QoSenabled distributed mutual

exclusion in public clouds. On the Move to Meaningful Internet Systems: OTM 2011,

542-559.

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 20

5. G. Cao and M. Singhal, “A Delay-Optimal Quorum-Based Mutual Exclusion Algorithm

for Distributed Systems", IEEE Transactions on Parallel and Distributed Systems, Vol

12, No. 12, pp. 1256-1268, Dec. 2001.

6. G. Ricart, A.K. Agrawala, An optimal algorithm for mutual exclusion in computer

networks, Comm. ACM (CACM) 24 (1) (1981) 9–17.

7. Goscinski, A.M. (1990). Two Algorithms for Mutual Exclusion in Real-Time Distributed

Computer Systems. J. Parallel Distrib. Comput., 9, 77-82.

8. Housni, A., & Trehel, M. (2001). Distributed mutual exclusion token-permission

based by prioritized groups. In Computer Systems and Applications, ACS/IEEE

International Conference on. 2001 (pp. 253-259). IEEE.

9. Ichiro Suzuki and Tadao Kasami,” A distributed mutual exclusion algorithm”, ACM

transactions on Computer Systems Vol.3,no4,pp.344-349, nov.1985.

10. KANRAR, S., & CHAKI, N. (2010). FAPP: A New Fairness Algorithm for Priority Process

Mutual Exclusion in Distributed Systems. JNW, 5(1), 11-18.

11. Lim, J., Chung, K. S., Chin, S. H., & Yu, H. C. (2012). A gossip-based mutual exclusion

algorithm for cloud environments. Advances in Grid and Pervasive Computing, 31-45.

12. Lejeune, J., Arantes, L., Sopena, J., & Sens, P. (2012, May). Service level agreement

for distributed mutual exclusion in cloud computing. In Proceedings of the 2012 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid

2012) (pp. 180-187). IEEE Computer Society.

13. Lejeune, J., Arantes, L., Sopena, J., & Sens, P. (2013, October). A prioritized

distributed mutual exclusion algorithm balancing priority inversions and response

time. In Parallel Processing (ICPP), 2013 42nd International Conference on (pp. 290-

299). IEEE.

14. M. Singhal, A taxonomy of distributed mutual exclusion, Journal of Parallel and

Distributed Computing, 18(1), 1993, 94–101.

15. Neeraj Mittal and Mohan, “ A priority based distributed group mutual exclusion

algorithm when group access is non uniform”, Journal and parallel Distributed

computing Vol. 67,pp. 797-815,2007.

 International Journal of Advanced Research in ISSN: 2278-6252

 Engineering and Applied Sciences Impact Factor: 7.687

Vol. 11| No. 4 | April 2022 www.garph.co.uk IJAREAS | 21

16. Peyman Neamatollahi, Hoda Taheri, Mahmoud Naghibzadeh, “A Distributed Token-

based Scheme to Allocate Critical Resources”, IEEE 2011

17. Ranganath Atreya and Neeraj Mittal, “ A dynamic group mutual algorithm using

surrogate quorum”, in the procedding of 25th IEEE International conference on

distributed computing system,2005 pp. 251-260

18. Ranganath Atreya, Neeraj Mittal, Member, IEEE Computer Society, and Sathya Peri,

“A Quorum-Based Group Mutual Exclusion Algorithm for a Distributed System with

Dynamic Group Set”, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

VOL. 18, NO. 10, OCTOBER 2007

19. Raymond, K. (1989). A Tree-Based Algorithm for Distributed Mutual Exclusion. ACM

Trans. Comput. Syst., 7, 61-77.

20. Ricart, G., Agrawala, A.: An Optimal Algorithm for Mutual Exclusion in Computer

Networks. CACM, Vol. 24(1). (1981) 9–17

21. Sandeep Lodha and Ajay Kshemkalyani, A Fair Distributed Mutual Exclusion

Algorithm, IEEE Transactions on Parallel and Distributed Systems, Volume 11 , Issue 6

(June 2000), Pages: 537 - 549.

22. Singhal, M.: A Dynamic Information Structure Mutual Exclusion Algorithm for

Distributed System. IEEE Trans. Parallel and Distributed Systems, Vol. 3(1). (1993)

94–101

23. Y.-J. Joung, ,”The congenial talking philosophers problem in computer networks”,

Distributed computing Vol.15,pp 155-175,2002.

24. Y.-J. Joung, “ Quorum based algorithm for group mutual exclusion”, IEEE transactions

on parallel and distributed system, vol 14, no. 5 pp.2003,may2003

25. Y.-J. Joung, Asynchronous group mutual exclusion, Distributed Comput. (DC) 13 (4)

(2000) 189–206.

