
 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.111

Special Issue - NCECP16@NMAMIT, NITTE www.garph.co.uk IJARIE | 48

Design and Implementation of Elastic Key Value Data Store

Hareesh B. N., PG Student, CSE, AIET, Moodbidri

Venkatesh, Senior Associate Professor, CSE, AIET, Moodbidri

Abstract: Berkeley DB is an open source embedded
database library that provides scalable, high-performance,
transaction-protected data management services to
applications. Berkeley DB provides a simple function-call
API for data access and management. By "open source,"
we mean that Berkeley DB is distributed under a license
that conforms to the Open Source Definition. This license
guarantees that Berkeley DB is freely available for use
and redistribution in other open source products.
Sleepycat Software sells commercial licenses for
redistribution in proprietary applications, but in all cases
the complete source code for Berkeley DB is freely
available for download and use. Berkeley DB is embedded
because it links directly into the application. It runs in the
same address space as the application. As a result, no
inter-process communication, either over the network or
between processes on the same machine, is required for
database operations. Berkeley DB provides a simple
function-call API for a number of programming
languages, including C, C++, Java, Perl, Tcl, Python, and
PHP. All database operations happen inside the library.
Multiple processes, or multiple threads in a single process,
can all use the database at the same time as each uses the
Berkeley DB library. Low-level services like locking,
transaction logging, shared buffer management, memory
management, and so on are all handled transparently by
the library.

The library is extremely portable. It runs under almost all
UNIX and Linux variants, Windows, and a number of
embedded real-time operating systems. It runs on both 32-
bit and 64-bit systems. It has been deployed on high-end
Internet servers, desktop machines, and on palmtop
computers, set-top boxes, in network switches, and
elsewhere. Once Berkeley DB is linked into the
application, the end user generally does not know that
there's a database present at all. Berkeley DB is scalable
in a number of respects. The database library itself is
quite compact (under 300 kilobytes of text space on
common architectures), but it can manage databases up
to 256 terabytes in size. It also supports high concurrency,
with thousands of users operating on the same database
at the same time. Berkeley DB is small enough to run in
tightly constrained embedded systems, but can take
advantage of gigabytes of memory and terabytes of disk
on high-end server machines.

Keywords: HBASE, Berkeley DB, Elastic key value store

I. INTRODUCTION

As computer hardware has spread into virtually every
corner of our lives, of course, software has followed.
Software developers today are building applications not
just for conventional desktop and server environments, but
also for handheld computers, home appliances, networking
hardware, cars and trucks, factory floor automation systems,
and more. While these operating environments are diverse,
the problems that software engineers must solve in them
are often strikingly similar. Most systems must deal with
the outside world, whether that means communicating with
users or controlling machinery. As a result, most need some
sort of I/O system. Even a simple, single-function system
generally needs to handle multiple tasks, and so needs some
kind of operating system to schedule and manage control
threads. Also, many computer systems must store and
retrieve data to track history, record configuration settings,
or manage access. Data management can be very simple. In
some cases, just recording configuration in a flat text file is
enough. More often, though, programs need to store and
search a large amount of data, or structurally complex data.
Database management systems are tools that programmers
can use to do this work quickly and efficiently using off-
the-shelf software. Of course, database management
systems have been around for a long time. Data storage is a
problem dating back to the earliest days of computing.
Software developers can choose from hundreds of good,
commercially-available database systems. The problem is
selecting the one that best solves the problems that their
applications face. Figure 1: HBase architecture [3]. See
Figure 2 for a high-level comparison with the architecture
of HBase-BD.

What is Berkeley DB?

So far, we've discussed database systems in general terms.
It's time now to consider Berkeley DB in particular and see
how it fits into the framework we have introduced. The key
question is? what kinds of applications should use Berkeley
DB? Berkeley DB is an open source embedded database
library that provides scalable, high-performance,
transaction-protected data management services to
applications. Berkeley DB provides a simple function-call
API for data access and management. By "open source," we
mean that Berkeley DB is distributed under a license that
conforms to the Open Source Definition. This license
guarantees that Berkeley DB is freely available for use and
redistribution in other open source products. Sleepycat
Software sells commercial licenses for redistribution in
proprietary applications, but in all cases the complete

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.111

Special Issue - NCECP16@NMAMIT, NITTE www.garph.co.uk IJARIE | 49

source code for Berkeley DB is freely available for
download and use.

Berkeley DB is embedded because it links directly into the
application. It runs in the same address space as the
application. As a result, no inter-process communication,
either over the network or between processes on the same
machine, is required for database operations. Berkeley DB
provides a simple function-call API for a number of
programming languages, including C, C++, Java, Perl, Tcl,
Python, and PHP. All database operations happen inside the
library. Multiple processes, or multiple threads in a single
process, can all use the database at the same time as each
uses the Berkeley DB library. Low-level services like
locking, transaction logging, shared buffer management,
memory management, and so on are all handled
transparently by the library.

The library is extremely portable. It runs under almost all
UNIX and Linux variants, Windows, and a number of
embedded real-time operating systems. It runs on both 32-
bit and 64-bit systems. It has been deployed on high-end
Internet servers, desktop machines, and on palmtop
computers, set-top boxes, in network switches, and
elsewhere. Once Berkeley DB is linked into the application,
the end user generally does not know that there's a database
present at all. Berkeley DB is scalable in a number of
respects. The database library itself is quite compact (under
300 kilobytes of text space on common architectures), but it
can manage databases up to 256 terabytes in size. It also
supports high concurrency, with thousands of users
operating on the same database at the same time. Berkeley
DB is small enough to run in tightly constrained embedded
systems, but can take advantage of gigabytes of memory
and terabytes of disk on high-end server machines.

Berkeley DB generally outperforms relational and object-
oriented database systems in embedded applications for a
couple of reasons. First, because the library runs in the
same address space, no inter-process communication is
required for database operations. The cost of
communicating between processes on a single machine, or
among machines on a network, is much higher than the cost
of making a function call. Second, because Berkeley DB
uses a simple function-call interface for all operations,
there is no query language to parse, and no execution plan
to produce.

Data Access Services

Berkeley DB applications can choose the storage structure
that best suits the application. Berkeley DB supports hash
tables, Btrees, simple record-number-based storage, and
persistent queues. Programmers can create tables using any
of these storage structures, and can mix operations on
different kinds of tables in a single application.

Hash tables are generally good for very large databases that
need predictable search and update times for random-
access records. Hash tables allow users to ask, "Does this
key exist?" or to fetch a record with a known key. Hash

tables do not allow users to ask for records with keys that
are close to a known key.

Btrees are better for range-based searches, as when the
application needs to find all records with keys between
some starting and ending value. Btrees also do a better job
of exploiting locality of reference. If the application is
likely to touch keys near each other at the same time, the
Btrees work well. The tree structure keeps keys that are
close together near one another in storage, so fetching
nearby values usually doesn't require a disk access.Record-
number-based storage is natural for applications that need
to store and fetch records, but that do not have a simple
way to generate keys of their own. In a record number table,
the record number is the key for the record. Berkeley DB
will generate these record numbers automatically. Queues
are well-suited for applications that create records, and then
must deal with those records in creation order. A good
example is on-line purchasing systems. Orders can enter
the system at any time, but should generally be filled in the
order in which they were placed.

Data management services

Berkeley DB offers important data management services,
including concurrency, transactions, and recovery. All of
these services work on all of the storage structures.Many
users can work on the same database concurrently.
Berkeley DB handles locking transparently ensuring that
two users working on the same record do not interfere with
one another.The library provides strict ACID transaction
semantics, by default. However, applications are allowed to
relax the isolation guarantees the database system makes.

Multiple operations can be grouped into a single transaction,
and can be committed or rolled back atomically. Berkeley
DB uses a technique called two-phase locking to be sure
that concurrent transactions are isolated from one another,
and a technique called write-ahead logging to guarantee
that committed changes survive application, system, or
hardware failures.When an application starts up, it can ask
Berkeley DB to run recovery. Recovery restores the
database to a clean state, with all committed changes
present, even after a crash. The database is guaranteed to be
consistent and all committed changes are guaranteed to be
present when recovery completes.Some applications need
fast, single-user, non-transactional Btree data storage. In
that case, the application can disable the locking and
transaction systems, and will not incur the overhead of
locking or logging. If an application needs to support
multiple concurrent users, but doesn't need transactions, it
can turn on locking without transactions. Applications that
need concurrent, transaction-protected database access can
enable all of the subsystems.

II. GENERAL SPECIFICATIONS

Application code that uses only the Berkeley DB access
methods might appear as follows:

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.111

Special Issue - NCECP16@NMAMIT, NITTE www.garph.co.uk IJARIE | 50

switch (ret = dbp->put(dbp, NULL, &key, &data, 0)) {
case 0:
 printf("db: %s: key stored.\n", (char *)key.data);
 break;
default:
 dbp->err(dbp, ret, "dbp->put");
 exit (1);
}
The underlying Berkeley DB architecture that supports this
is:

Small

As you can see from this diagram, the application makes
calls into the access methods, and the access methods use
the underlying shared memory buffer cache to hold recently
used file pages in main memory.

When applications require recoverability, their calls to the
Access Methods must be wrapped in calls to the transaction
subsystem. The application must inform Berkeley DB
where to begin and end transactions, and must be prepared
for the possibility that an operation may fail at any
particular time, causing the transaction to abort.

An example of transaction-protected code might appear as
follows:

for (fail = 0;;) {
 /* Begin the transaction. */
 if ((ret =dbenv->txn_begin(dbenv, NULL, &tid, 0))!= 0) {
 dbenv->err(dbenv, ret, "dbenv->txn_begin");
 exit (1);
 }
 /* Store the key. */
 switch (ret = dbp->put(dbp, tid, &key, &data, 0)) {
 case 0:
 /* Success: commit the change. */
 printf("db: %s: key stored.\n", (char *)key.data);
 if ((ret = tid->commit(tid, 0)) != 0) {
 dbenv->err(dbenv, ret, "DB_TXN->commit");
 exit (1);
 }
 return (0);
 case DB_LOCK_DEADLOCK:
 default:
 /* Failure: retry the operation. */
 if ((t_ret = tid->abort(tid)) != 0) {
 dbenv->err(dbenv, t_ret, "DB_TXN->abort");
 exit (1);

 }
 if (++fail == MAXIMUM_RETRY)
 return (ret);
 continue;
 }
 }

In this example, the same operation is being done as before;
however, it is wrapped in transaction calls. The transaction
is started with DB_ENV->txn_begin and finished with
DB_TXN->commit. If the operation fails due to a deadlock,
the transaction is aborted using DB_TXN->abort, after
which the operation may be retried.

There are actually five major subsystems in Berkeley DB,
as follows:

Access Methods

The access methods subsystem provides general-purpose
support for creating and accessing database files formatted
as Btrees, Hashed files, and Fixed- and Variable-length
records. These modules are useful in the absence of
transactions for applications that need fast formatted file
support. See DB->open and DB->cursor for more
information.

Memory Pool

The Memory Pool subsystem is the general-purpose shared
memory buffer pool used by Berkeley DB. This is the
shared memory cache that allows multiple processes and
threads within processes to share access to databases. This
module is useful outside of the Berkeley DB package for
processes that require portable, page-oriented, cached,
shared file access.

Transaction

The Transaction subsystem allows a group of database
changes to be treated as an atomic unit so that either all of
the changes are done, or none of the changes are done. The
transaction subsystem implements the Berkeley DB
transaction model. This module is useful outside of the
Berkeley DB package for processes that want to
transaction-protect their own data modifications.

Locking

The Locking subsystem is the general-purpose lock
manager used by Berkeley DB. This module is useful
outside of the Berkeley DB package for processes that
require a portable, fast, configurable lock manager.

Logging

The Logging subsystem is the write-ahead logging used to
support the Berkeley DB transaction model. It is largely
specific to the Berkeley DB package, and unlikely to be
useful elsewhere except as a supporting module for the
Berkeley DB transaction subsystem.

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.111

Special Issue - NCECP16@NMAMIT, NITTE www.garph.co.uk IJARIE | 51

Here is a more complete picture of the Berkeley DB library:

Large

In this model, the application makes calls to the access
methods and to the Transaction subsystem. The access
methods and Transaction subsystems in turn make calls
into the Memory Pool, Locking and Logging subsystems
on behalf of the application.

The underlying subsystems can be used independently by
applications. For example, the Memory Pool subsystem can
be used apart from the rest of Berkeley DB by applications
simply wanting a shared memory buffer pool, or the
Locking subsystem may be called directly by applications
that are doing their own locking outside of Berkeley DB.
However, this usage is not common, and most applications
will either use only the access methods subsystem, or the
access methods subsystem wrapped in calls to the Berkeley
DB transaction interfaces.

HBase-BDB is the result of re-engineering HBase to
replace its LSM-Tree implementation over an HDFS
backend with the use of a collection of Berkeley Database
(BDB) Java Edition (JE) [11] storage managers over local
file systems. This design leverages the log structured [12]
B+ tree implementation at the core of BDB-JE. Since data
at each node are stored and organized as a full log there is
no need for a distinct WAL, eliminating one cause of write
amplification in HDFS. Additionally, the aggressive
storage reorganization needed in HBase-HDFS to improve
random read performance is not needed in HBase-BDB.
BDB-JE still needs to reorganize its storage layout to
reclaim space; however this is a far less aggressive
operation compared to HBase HDFS. Furthermore, HBase-
BDB maintains elasticity properties (which HBase-HDFS
achieves through the use of HDFS) by re implementing two
key operations (split, move) with minimum service
disruption. The use of local file systems allows any node to
reorganize its data without affecting any other node or any
of its replicas. In the following sections we describe more
details on the design of HBase- BDB. Figure 2b depicts the
structure of the BDB B+ tree, which consists of Internal
Nodes (IN), Bottom Internal Nodes (BIN), and Leaf Nodes
(LN) which hold the (key, offset-to disk for value) pair. A
single instance of BDB can manage multiple databases (a
BDB database maps to an HBase region in HBase-BDB)
writing everything to a logical (per database) log, which is
the only on-disk structure. A log is implemented as a
number of physical files of configurable size. Below we
present the schema mapping of HBase in HBase-BDB and
its basic operations.

III. FIGURES

Figure 1: HBase architecture [3]. See Figure 2 for a high-level comparison with the architecture of HBase-BD

IV. CONCLUSION

HBase-BDB, a distributed key-value store that shares
HBase’s data model and data distribution mechanisms but
departs from it in the use of a log structured B+-tree

indexed storage back end over locally attached files
systems. With the use of a log structured key value store
combined with novel elasticity mechanisms HBase-BDB is
able to improve over HBase in random read and write
YCSB workloads by 30% and 85% respectively. HBase-

 International Journal of Advanced Research in ISSN: 2278-6244
 IT and Engineering Impact Factor: 6.111

Special Issue - NCECP16@NMAMIT, NITTE www.garph.co.uk IJARIE | 52

BDB lags behind HBase only in random scans; these
however are only a small share of overall operations in
popular workloads such as e-mail, SMS, Chat, etc. Support
for elasticity in HBase-BDB is shown to be effective in
TPCC experiments yielding similar availability and
performance impact to what is achievable with HBase-
HDFS.

REFERENCES

[1] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-
end arguments in system design,” ACM
Transactions on Computer Systems (TOCS), vol. 2,
no. 4, pp. 277–288, 1984.

[2] M. Welsh and D. Culler, “Virtualization considered
harmful: OS design directions for well-conditioned
services,” in Proceedings of the 8th Workshop on
Hot Topics in Operating Systems, 2001, pp. 139–
144.

[3] T. Harter, D. Borthakur, S. Dong, A. S. Aiyer, L.
Tang, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Analysis of HDFS under HBase: a
Facebook messages case study,” in Proceedings of
USENIX Conference on File and Storage
Technologies, 2014, pp. 199–212.

[4] P. Shetty, R. P. Spillane, R. Malpani, B. Andrews, J.
Seyster, and E. Zadok, “Building workload-
independent storage with VT-trees.” In Proceedings
of USENIX Conference on File and Storage
Technologies, 2013, pp. 17–30.

[5] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The
Linux B-tree filesystem,” ACM Transactions on
Storage, vol. 9, no. 3, p. 9, 2013

[6] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C.
Ooi, “LogBase: a scalable log-structured database
system in the cloud,” Proceedings of the VLDB
Endowment, vol. 5, no. 10, pp. 1004–1015, 2012.

