

ENCIPHERING SEMI GROUPS USING CYCLIC GROUP (G, +)

B. L. Raina* Goutam Datta* Tapas Kumar*

Manoj Kumar jain*

Abstract: Cryptosystem is a setup such that a function f converts any plain text (P) message into cipher text \bigcirc message by using enciphering transformation. We then use f^1 deciphering transformation which reverses the above process. In this paper we extend the generalization of standard Diffie- Hellman key exchange and ElGamal cryptosystem in (Z/pZ)* by converting a semi-group under the binary operation of '+'(more simply from G(V, E) i.e. graph G) action on to a finite dimensional vector space T over F₂.

Keywords: Cryptosystem, cipher -text, Semi-group action, enciphering.

*School of computer science and engg., Lingayas University, Haryana, India.

1. INTRODUCTION

The generalized discrete problem (GDP) is the basic problem for many cryptosystem. Discrete logarithm problem (**DLP**) (see e.g.[1,2,3,8,9]) is the fundamental problem that is discussed in cryptosystem. Let G be a finite group where a, b \in G be the arbitrary elements. We find an integer n \in N such that a*n = b, * operation being the multiplication, that is (a*a*a.....*a=b).In the present paper , we replace this operation by addition and discrete logarithmic algorithm over a group can be seen more simply as a special instance of an action by a semi -group over (G,+).Here we find an integer n \in N such that n*a = b.that is (a+a+a.....+a=b).This problem has time complexity of order n .It has been shown ,if for b belonging to < a>, the cyclic group generated by a then b \in <a> under the operation of '+' mod (m) so that there is a unique integer n satisfying 1 \leq n \leq ord(a) such that n *a=b. This integer is discrete in relation of b w.r.t. a \in R

DLP plays an important role in Diffe-Hellman key agreement and the Elgamal public key cryptosystem [1-3,8,9] .The Diffe – Hellman key agreement allows two persons say, Alice & Bob to exchange a secret key k. For Alice and Bob to agree in a graph (G,+) and a common base g \in G, Alice chooses a random integer a \in N and Bob chooses a random integer b \in N, Alice transmits to Bob g^a and Bob transmits to Alice g^b. Then common secret key is g^{ab}.

2. THE ELAGAMAL PUBLIC KEY CRYPTOSYSTEM WORKS AS FOLLOWS:

Alice choose $n \in N$ and $a, b \in G$ when $b=n^*a$, the private key of Alice is (a, b, n) & the public key is (a,b). Bob chooses random integer $r \in N$ and applies cryptal function:

E : G→ GXG m: (C1, C2)= (r*a, m+r*b) ={(a+a+a+...... r times),m+(b+b+b+ ...r times)}

Alice computes message "m" from the cipher text (c1, c2) by

$$m = c_2 + (-n^*c_1)$$

In this paper, we discuss these problems by converting a semi-group G and determine a semi-group action on a finite vector space of dimension q over the field F_2 . Our paper is in the same vein as of G. Maze et al [7].

3. DERIVATION OF A SEMI-GROUP FROM A GRAPH

Let G be a finite (v_i, e_i) graph and H be the sub-group of G. Let x_H denote a vector corresponding to H such that

 $x_{H=} \{ x_1, x_2, x_3 \dots x_q \}$, when $x_i = \{ 1, if e_i \in H \}$ {0, otherwise

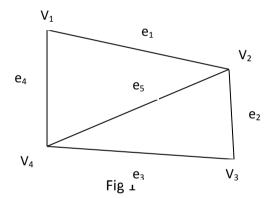
Let U be the set of such vectors. Let '+' define the binary operation on U. if '+' is associated

to U, then (U,+) is called semi-group and simply denoted by U

If we consider the binary operation as '+' (addition modulo 2), then we have

$$\begin{aligned} x_h + y_k &= (x_1, x_2, x_3 \dots x_q), (y_1, y_2, y_3 \dots y_q) \\ &= (x_1 + y_1, x_2 + y_2, \dots x_q + y_q) \\ & \text{where } x_h, y_k \in U \end{aligned}$$

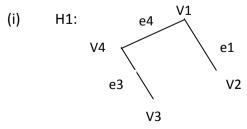
Illustration: - Consider the graph G in fig.1 given by:



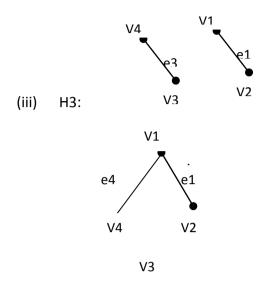
Here V = {V₁, V₂, V₃, V₄} i.e. v = n(V) = 4

$$E = \{ e_1, e_2, e_3, e_4, e_5 \}$$
 i.e. $e = n(E) = 5 = q$

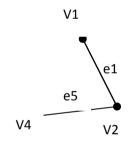
We shall now consider the following 7 subgroups of G shown in fig 2 and show that (U, +) is semi –group.



(ii) H2:



(iv) H4:



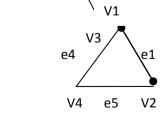
V3

V2

e3

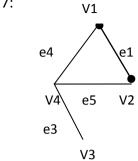
(v) H5: V1 e5

(vi) H6: V²



V3

(vii) H7:



Let x_{Hi} , i = 1......7 be the vector corresponding to H_{i} , respectively given by U = { x_{Hi} }, i = 1,...,7 Now let

 $x_{H1} = \{1, 0, 1, 1, 0\}, x_{H2} = \{1, 0, 1, 0, 0\}, x_{H3} = \{1, 0, 0, 1, 0\}, x_{H4} = \{1, 0, 0, 0, 1\}, x_{H5} = \{1, 0, 10, 10\}, x_{H5} = \{1, 0, 10\}, x_{H5}$

 $x_{H6} = \{1, 0, 0, 1, 1\}, x_{H7} = \{1, 0, 1, 1, 1\},\$

It is now easy to see that:

 $x_{H1} + x_{H2} = x_{H1}$, $x_{H1} + x_{H3} = x_{H1}$, $x_{H1} + x_{H4} = x_{H6}$, $x_{H1} + x_{H5} = x_{H6}$, $x_{H1} + x_{H6} = x_{H6}$, $x_{H1} + x_{H7} = x_{H7}$, $x_{H2} + x_{H3} = x_{H1}$, $x_{H2} + x_{H4} = x_{H7}$, $x_{H2} + x_{H5} = x_{H5}$, $x_{H2} + x_{H6} = x_{H7}$, $x_{H2} + x_{H7} = x_{H7}$, $x_{H3} + x_{H4} = x_{H6}$, $x_{H3} + x_{H5} = x_{H6}$, $x_{H3} + x_{H6} = x_{H6}$, $x_{H3} + x_{H7} = x_{H7}$, $x_{H4} + x_{H5} = x_{H5}$, $x_{H4} + x_{H6} = x_{H6}$, $x_{H4} + x_{H7} = x_{H7}$, $x_{H5} + x_{H6} = x_{H7}$, $x_{H5} + x_{H6} = x_{H7}$, $x_{H5} + x_{H6} = x_{H7}$, $x_{H6} + x_{H7} = x_{H7}$. It is easy to verify that (U,+) is a semi-group.

4. USAGE OF U ACTION TO DERIVE COMMON KEY

Let T be a q dimensional vector space over $F_2.$ Define the left action of U on T , ψ :

U X T \rightarrow T such that ψ (x, t) = x + t, we call this action as U action on the vector space T. Let G be (v_i, e_i) be the graph such that (U, +) is an abelian semi –group associated to graph G, T be a q dimensional vector space over F2 and plus sign be U action on T as defined above. We define Diffie-Hellman key exchange using U-action as follows:

- 1. Alice and Bob agrees on an element t \in T.
- 2. Alice chooses x E U and computes x + t. Alice's private key is x , her public is x + t
- 3. Bob choose $y \in U$ and computes y + t
- 4. Their common secret key is then

x + (y + t) = (x + y) + t = (y + x) + t = y + (x + t)

Example:

Consider the graph G given in fig 1 and H_i , i = 1,2,3,....7 be the seven graph of G as in fig 2. Then (U, +) is a semi – group.

Let T be the 5- dimensional vector space over F_2 . suppose Alice & Bob want to agree on a key. For they choose t \in T as t = (1, 0,0,0,0) then Alice choose X _{H 1} =(1,0,1,1,0) \in U and computes $x_{H1} + t = (1,0,1,1,0)$. then sends it to Bob.

Similarly Bob choose $\mathbf{x}_{H4} = \{1,0,0,0,1\}$ and computes $x_{H4} + t = \{1,0,0,0,1\} \in U$. Then sends it to Alice so that their common key is

 $x_{H1} + (x_{H4} + t) = x_{H4} + (x_{H1} + t) = \{1,0,1,1,1\}.$

5. USAGE OF U-ACTION OF DI FFE – HELLMAN PROBLEM TO DERIVE MESSAGE

Let G = (v_i , e_i) be the graph and (U, +) be a semi group associated to graph G. Let T be a qdimensional vector space over F_2 and '+' be U action on t defined by :

Given r,s,t \in T with s= x+ r and t= y + r for some x, y \in U to find (x + y) + r \in T. We now use cryptosystem, using U- action on T.

Let G, (U, +), T be as defined above such that U-action on T be also defined as above . Then we define :

ElGamal Crytosystem using U-action as follows :

- 1. Alice chooses element t ET and x E U. Alice's public key is (t, x+t).
- 2. Bob chooses random element y C U and encrypt a message'm' using encryptive function
- 3. $f(m,y) = ((y+t, y + (x + t)) + m) = (c_1,c_2)$
- 4. Alice can decrypt the message using :

 $m = -(y + (x + t)) + (y + (x + t)) + m = -(x + c_1) + c_2.$

Remark : Here message 'm' is expressed in terms of vector where each letter in the message represents a vector ($x_1, x_2, x_3, \dots, x_q$), $q \ge 26$ such that

 $x_i = \{ 1 \text{ if corresponding letter is in the } ith position of alphabet \}$

0. Otherwise.

For example if q = 26 then each letter is English alphabet represents as follow:

A = {1, 0, 0, 0,0} B= {0,1,0,0,0.....0} C = {0,0,1,0,....0}

Vol. 2 | No. 6 | June 2013

.....

••••••

Illustration

Let G = (v_i , e_i) = (v_i , q) with q=26 ie T be a 26 dimensional vector space over F2, (T, +) is an additive abelian group and (U,+) be the semi group associated with the group G. The action of U on T is as defined above.

1.Suppose Alice chooses $t = \{0,1,1,0,1,0,0,1,0,0,...,0\} \in T$ then choose $x = \{1,0,1,0,0,1,0,0,0,...,0,0\} \in U$ corresponding to one sub graph H1 of G and compute

x +t ={1,1,1,0,1,0,0,1,0,, 0,0,0,0}. Her public key is (t, x+t)

2. Bob wishes and sends a message m "SEE ME TODAY" to Alice. He sends it letter by letter.

So, first he wants to send the letter

S = m'(m) = (0,0,0,.....,0, 1,0.....0)

For he chooses y = {0,0,1,0,1,0,0,0,0,0,.....0} EU that is a vector corresponding to one sub graph H2 of G and compute

y+t = {0,1,1,0,1,0,0,1,0.....0,0,0,0} = c1

also compute y + (x+t) ={1,1,1,0,1,0,0,1,0,0,0,0,....,,0,0}

and y + (x+t) + m' = $\{1,1,1,0,1,0,0,1,0,\dots,0,0,0,0,0,\dots,0\}$ + $\{0,0,0,0,0,\dots,1,0,0,0,0,\dots,0,0,0\}$

={1,1,1,0,1,0,0,1,0,...0,1,...0,0,0,0}=c₂

Then he sends (c_1, c_2) to Alice

3. After receiving this Alice decrypts the message by computing

$$c_2 - (x + c_1)$$

Now $c_2 - (x + c_1) = \{0, 0, 0, 0, 0, 0, 0, 0, ..., 0, 1, 0, ..., 0\} = m'm = S$

Similarly he transfers each letter of message m.

REFERENCES:

- 1. H. Cohen, A course in Computational Algebraic Number Theory, Gaduate Text in Mathematics , 138, Springer Verlag, Berlin, 1993.
- 2. W.Diffie and M.E.Hellman, New Directions in cryptography, IEEE Trans. Inform. Theory,22(1976,644-654)
- J.B.Fraleigh, "A first course of Abstract Algebra'c, 7th Edition, Pearson Inc, Singapore 2003.

- 4. M.Gavalec,Computing matrix period in max- min algebra, Discrete applied math,75(1997),63-70.
- 5. C.Monico, On finite congruence-simple semirings, J.Algebra 271 (2004, 846-854).
- 6. G .Maze, C.Monico and J.Rosenthal, Public key cryptography based on semigroup actions, Advances in mathematics and communication, vol.1, No.4 2007, 489-507
- 7. G. Maze, Chris Monic & Joachem Rosenthal," Public Key Cryptography Basis on Semigroup action" Advances in Mathematics of Communication, v1, N0.4, 2007, 489-507.
- 8. F.Harry. "Graph Theory" Addison-Wesley Publishing Company Inc, 1969.
- 9. I.N.Herstein,"Topics in Algebra"Wiley Eastern Ltd ,New Delhi,1975.
- 10. N.Koblitz A Course in Number Theory & Cryptography "2nd edition Springer Verlag 1994.