COUPLED FIXED POINT THEOREM IN COMPLETE PARTIALLY ORDERED METRIC SPACE

A. Kumar-Department of Mathematics ,D.A.V. College, Kanpur (U.P.) India

Abstract

In this paper, we have proved a coupled fixed point theorem in partially ordered metric spaces by employing a contractive condition. Our results generalized and extent the work of Bhaskar and Lakshikhantham [1].

Keywords: Coupled fixed point theorems, partially ordered metric space.

200 AMS Subject Classification: 47H10, 54H25, 47H09.

§1. INTRODUCTION

The notion of coupled fixed pint was introduced by Chang and Ma [2]. Since the, the concept has been of interest to many researchers in metrical fixed pointtheory. Bhaskar and Lakshimikantham [1] established coupled fixed point theorems in a metric space endowed with partial order by employing contractive condition. Harjani et al. [4] established some fixed point in partially ordered metric space by using contractive condition of rational type. Motivated by works of Bhaskar [1] and Harjani [4], in the present paper we have proved a coupled fixed point theorem in partially ordered metric space by employing some notion of Bhaskar [1] and Harjani [4], in the present paper, we have proved a coupled fixed point theorem in partially ordered metric space by employing some notions of Bhaskar and Lakshmikantham [1] as well as a rational type contrction. The result of our theorem generalised and extended the work of Bhaskar and Laxminathan [1].

Let (X, d) be a metric space. An element $(x, y) \hat{\mathrm{I}} X^{\prime} X$ is said to be a coupled fixed point of the mapping $f: X^{\prime} X ® X$ if

$$
f(x, y)=x \text { and } f(y, x)=y
$$

Suppose (X, p) be a partially ordered set and $f: X{ }^{\prime} X{ }^{\circledR} X$ we say that f has the mixed monotone property if $f(x, y)$ is monotone nondecreasing in x and monotone
nonincreasing in y, that is " $x, y \hat{\mathrm{I}} X$,

$$
" x_{1}, x_{2} \hat{\mathrm{I}} X, x_{1} \mathrm{p} x_{2} \mathrm{P} f\left(x_{1}, y\right) \mathrm{p} f\left(x_{2}, y\right)
$$

and

$$
" y_{1}, y_{2} \hat{\mathrm{I}} X, y_{1} \mathrm{p} y_{2} \mathrm{P} f\left(x, y_{1}\right) \underline{\mathrm{f}} f\left(x, y_{2}\right)
$$

Definition 1. Let $(X, £)$ be a partially ordered set and $F: \mathrm{X}^{\prime} X ® X$. The mapping F is said to have the mixed monotone property if F is monotone nondecreasing in its first argument and is monotone non increasing in its second argument, that is for all $x_{1}, x_{2} \hat{I} X, x_{1} £ x_{2}$ implies $F\left(x_{1}, y\right) £ F\left(x_{2}, y\right)$ for any y Î X,
and for all $y_{1}, y_{2} \hat{I} X, y_{1} £ y_{2}$ implies $F\left(x_{1}, y\right)^{3} \quad F\left(x_{2}, y\right)$ for any x Î X,

Theorem 1. Let (X, p, d) be a partially ordered complete metric space. suppose $f: X{ }^{\prime} X ® X$ be a continuous mapping which has the mixed monotone property such that
$d(f(x, y), f(u, v) \mathrm{p} a\{d(x, u)+d(u, f(x, y)\}$

$$
\begin{equation*}
+b d(x, f(x, y)+c d(u, f(u, v) \tag{3.3}
\end{equation*}
$$

for every two pairs of points $(x, y),(u, v) \hat{I} X^{\prime} X$ such that $x^{1} u$ and $\frac{c}{1-(a+b)} \hat{I}(0,1)$.

Proof. Choose an arbitrary pair $\left(x_{0}, y_{0}\right) \hat{I} X^{\prime} X$ and set $x_{1}=f\left(x_{0}, y_{0}\right), y_{1}=f\left(y_{0}, x_{0}\right)$ and we can choose $x_{2}, y_{2} \hat{I} X$ such that $x_{2}=f\left(x_{1}, y_{1}\right)$ and $y_{2}=f\left(y_{1}, x_{1}\right)$ therefore

$$
\begin{aligned}
f^{2}\left(x_{0}, y_{0}\right) & =f\left(f\left(x_{0}, y_{0}\right), f\left(y_{0}, x_{0}\right)\right) \\
& =f\left(x_{1}, y_{1}\right)=x_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
f^{2}\left(y_{0}, x_{0}\right) & =f\left(f\left(y_{0}, x_{0}\right), f\left(x_{0}, y_{0}\right)\right) \\
& =f\left(y_{1}, x_{1}\right)=y_{2}
\end{aligned}
$$

Due to mixed monotone property of f we obtain,

$$
\begin{aligned}
& x_{2}=f^{2}\left(x_{0}, y_{0}\right)=f\left(x_{1}, y_{1}\right) \underline{\mathrm{f}} f\left(x_{0}, y_{0}\right)=x_{1} \\
& y_{2}=f^{2}\left(y_{0}, x_{0}\right)=f\left(y_{1}, x_{1}\right) \text { p } f\left(y_{0}, x_{0}\right)=y_{1}
\end{aligned}
$$

In general, we have that for $n \hat{\mathrm{I}} N$,
$x_{n+1}=f^{n+1}\left(x_{0}, y_{0}\right)=f\left(f^{n}\left(x_{0}, y_{0}\right), f^{n}\left(y_{0}, x_{0}\right)\right)$
$y_{n+1}=f^{n+1}\left(x_{0}, y_{0}\right)=f\left(f^{n}\left(y_{0}, x_{0}\right), f^{n}\left(x_{0}, y_{0}\right)\right)$
$d\left(x_{n+1}, x_{n}\right)=d\left(f\left(x_{n}, y_{n}\right), f\left(x_{n-1}, y_{n-1}\right)\right)$
$\mathrm{p} a\left\{d\left(x_{n}, x_{n-1}\right)+d\left(x_{n-1}, f\left(x_{n}, y_{n}\right)\right)\right\}$
$+b d\left(x_{n}, f\left(x_{n}, y_{n}\right)\right)+c d\left(x_{n-1}, f\left(x_{n-1}, y_{n-1}\right)\right)$
$\mathrm{p} a\left\{d\left(x_{n}, x_{n-1}\right)+d\left(x_{n-1}, x_{n+1}\right)\right\}+b d\left(x_{n}, x_{n+1}\right)+c d\left(x_{n-1}, x_{n}\right)$
$\mathrm{p}(a+b) d\left(x_{n}, x_{n+1}\right)+c d\left(x_{n-1}, x_{n}\right)$
$d\left(x_{n+1}, x_{n}\right) \mathrm{p} \frac{c}{1-(a+b)} d\left(x_{n-1}, x_{n}\right)$
Similarly we have
$d\left(y_{n+1}, y_{n}\right)=d\left(f\left(y_{n}, x_{n}\right), f\left(y_{n-1}, x_{n-1}\right)\right)$
$d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right) \mathrm{p} \frac{c}{1-(a+b)} e_{e}^{e}\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)$ 㲙
Let $d_{n}=d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right) l=\frac{c}{1-(a+b)}$.
Then we have,

$$
d_{n} \mathrm{p} l d_{n-1} \mathrm{p} l^{2} d_{n-2} \mathrm{p} \times \infty \times l^{n} d_{0}
$$

If $d_{0}=0$, then $\left(x_{0}, y_{0}\right)$ is a coupled fixed point of f.

Suppose that $d_{0}>0$, Then for each $r \hat{I} N$. We obtain by triangle inequality

$$
d\left(x_{n}, x_{n+r}\right)+d\left(y_{n}, y_{n+r}\right) \underline{p}\left[d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)\right.
$$

$\left.+\operatorname{xx} \times \infty d\left(x_{n+r-1}, x_{n+r}\right)\right]$
$\mathrm{p} d_{n}+d_{n+1}+\operatorname{sex}_{n+r-1}$
$\mathrm{p} \frac{l^{n}\left(1-l^{r}\right) d_{0}}{1-l} ® 0, \quad n ® \neq$
therefore $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences in (X, d). Since (X, d) is a complete metric space, there exists x^{*}, y^{*} Î X such that

$$
\lim _{n ® \nexists} x_{n}=x^{*}
$$

and $\lim _{n ® ¥} y_{n}=y^{*}$ we now show that $\left(x^{*}, y^{*}\right)$ is a coupled fixed point of f
Let $e>0$ continuity of f at $\left(x^{*}, y^{*}\right)$ implies that for a given $\frac{e}{2}>0$, there exist a $d>0$ such that $d\left(x^{*}, u\right), d\left(y^{*}, v\right)<d$ implies

$$
\begin{aligned}
& d\left(f\left(x^{*}, y^{*}\right), f(u, v)<\frac{e}{2}\right.
\end{aligned}
$$

there exist n_{0}, m_{0}, such that for $n^{3} n_{0}, m^{3} m_{0}$ we have $d\left(x_{n}, x^{*}\right) \mathrm{p} k$ and $d\left(x_{m}, x^{*}\right)$ p k therefore for $n \hat{\mathrm{I}} N, n^{3} \max \left\{n_{0}, m_{0}\right\}$ $d\left(f\left(x^{*}, y^{*}\right), x^{*}\right) \mathrm{p} d\left(f\left(x^{*} y^{*}\right), x_{n+1}\right)+d\left(x_{n+1}, x^{*}\right)$

$$
=d\left(f\left(x^{*}, y^{*}\right), f\left(x_{n}, y_{n}\right)\right)+d\left(x_{n+1}, x^{*}\right) \mathrm{p} \frac{e}{2}+k \mathrm{p} e
$$

from which it follows that

$$
f\left(x^{*}, y^{*}\right)=x^{*}
$$

In a similar manner we can show that $f\left(y^{*}, x^{*}\right)=y^{*}$.
Hence $\left(x^{*}, y^{*}\right)$ is a coupled fixed point of f.

REFERENCES

[1] Bhaskar, T.G. and Lakshmikantham V.: Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis, Theory Methods \& Applications 65 (7), 1379-1393, (2006).
[2] Chang S. and Ma Y.H.: Coupled fixed point of mixed monotone condensing operators and existence theorem of the solution for a class of functional equation arising in dynamic programming. J. Math. Anal. Appl. 160, 468-479, (1991).
[3] Ciric L., Olatinwo M.O., Gopal D. and Akinso G.: Coupled fixed point theorems for mapping satisfying a contractive condition of rational type on a partially ordered metric space. Advances in fixed point theory 2 No. 1, 1-8, ISSN : 1927-6303, (2012).
[4] Harjani, J., Lopez, B., Sadarangani, K.: A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space, abstract and applied analysis, Article ID/90701, 8 pages, Volume (2010).
[5] Banach S.: Surless operations dansles ensembles abstraits et leurs aux.. equationsintegrals, Fund. Math. 3, 160, (1922).
[6] Lakshmikantham V. And Ciric L.: Coupled fixed point theorems for nonlinear contraction in partially ordered metric spaces, Nonlinear Analysis, Theory, Methods \& Applications 70 (12), 4341-4349 (2009).

