

SPACE OF MULTIPLIERS AS A DUAL SPACE

Ashok Kumar Srivastava

Associate Professor

Department of Mathematics D.B.S. (PG) College, Kanpur.

Let \mathbb{E} be a homogeneous Banach space of distributions and $m(\mathbb{E}, \mathbb{E})$ be the space of multipliers from \mathbb{E} to \mathbb{E} . It is shown that $m(\mathbb{E}, \mathbb{E})$ is isometrically isomorphic to the dual space of a certain Banach space of continuous functions.

1. INTRODUCTION

In [4] and [5] some results of Fourier Analysis, known for L^p , C (the space of continuous functions), M (the space of measures) and Orlicz spaces etc., were studied for Banach spaces of distributions (briefly called BD-spaces). In [2], spaces A_p ($1 < p < \infty$) were defined and it was proved that $M_p(m(L^p, L^p))$ (in our notation) is isometrically isomorphic to the dual space of A_p . In this paper, we aim to extend this result to homogeneous BD-spaces. In section 3, we define the space $A(\mathbb{E}, \mathbb{E})$ and prove that if \mathbb{E} is a homogeneous BD-space, then $A(\mathbb{E}, \mathbb{E})$ is also a homogeneous BD-space. Next, we show that the space of multipliers $m(\mathbb{E}, \mathbb{E})$ is isometrically isomorphic to the dual space of $A(\mathbb{E}, \mathbb{E})$.

2. DEFINITIONS AND NOTATIONS

We refer to [1] for all the standard definitions, notations and assumptions. By \mathbb{G} , we shall denote the circle group $R/2\pi Z$. All our functions and distributions are assumed to be defined on the circle group \mathbb{G} . By \mathbb{D} , we shall denote the space of all distributions on \mathbb{G} .

A Banach space \mathbb{E} will be called a Banach space of distributions or a BD-space, if it is continuously embedded in \mathbb{D} ; and regarded as a subset of \mathbb{D} , it satisfies the following properties:

$$(2.1) \quad C^\infty \subset \mathbb{E}; (2.2) \quad f \in \mathbb{E} \Rightarrow T_x f \in \mathbb{E} \text{ and } \|T_x f\|_{\mathbb{E}} = \|f\|_{\mathbb{E}} \quad (2.3) \quad \|f\|_{\mathbb{E}} \text{ for all } x \in \mathbb{G}; \quad f \in \mathbb{E} \Rightarrow f^\vee \in \mathbb{E} \text{ and } \|f^\vee\|_{\mathbb{E}} = \|f\|_{\mathbb{E}}$$

Where $f^\vee(u) = f(u^\vee)$ for each $u \in C^\infty$ and $u^\vee(x) = u(-x)$ for all $x \in \mathbb{G}$.

The spaces L^p ($1 \leq p \leq \infty$), C , M and Orlicz spaces etc. are all BD-spaces. Throughout this paper, \mathbb{E} will always denote a BD-space.

A BD-space \mathbb{E} is said to be homogeneous if for every $f \in \mathbb{E}$, the function $x \rightarrow T_x f$ is continuous from \mathbb{G} to \mathbb{E} .

Let \mathbb{F} denote the set of transforms f of elements f of a BD-space \mathbb{E} . Then by (\mathbb{E}, \mathbb{E}) we denote the set of all complex valued functions ϕ on \mathbb{Z} such that

$$f \in E \Rightarrow \phi \cdot \hat{f} \in FE.$$

Such functions ϕ are called multipliers of type (E, E) .

To each $\phi \in (E, E)$, there corresponds a multiplier operator U_ϕ (see [1, 16.2]) from E to E , defined by the relation

$$(U_\phi f)^\wedge = \phi \cdot \hat{f}, \quad \forall f \in E.$$

By an m-operator of type (E, E) , we shall mean a linear operator U from E to E such that

$$U(T_x * f) = t * Uf$$

for each trigonometric polynomial t and each f in E . By $m(E, E)$ we shall denote the set of all m-operators of type (E, E) . If $U \in m(E, E)$, then its norm is denoted by $\|U\|_{m(E, E)}$. It can easily be proved that $U \in m(E, E)$ iff $U = U_\phi$ for some $\phi \in (E, E)$ (see [1, 16.2]).

3. THE SPACE $A(E, E)$

In this section, we define and discuss the space $A(E, E)$ and prove that $m(E, E)$ is isometrically isomorphic to the dual space of $A(E, E)$.

3.1. Definition

Let E be a homogeneous BD-space. The space $A(E, E)$ is defined as the subspace of C consisting of those functions h which can be represented as

$$h = \sum_{i=1}^{\infty} f_i * g_i, \text{ where } f_i \in E, g_i \in E^*.$$

$$\sum_{i=1}^{\infty} \|f_i\|_E \|g_i\|_{E^*} < \infty.$$

Note that if E is a homogeneous BD-space, then E^* is also a BD-space and $f_i * g_i \in C$ by Theorem 1 and Theorem 3 of [4]. The norm of h in $A(E, E)$ is taken as

$$\|h\|_{A(E, E)} = \inf \sum_{i=1}^{\infty} \|f_i\|_E \|g_i\|_{E^*},$$

where the infimum is taken over all the representations of h .

3.2. Lemma

Let E be a homogeneous BD-space and $U \in m(E, E)$. Then there exists a sequence $\{h_n\}_{i=1}^{\infty}$ in C^∞ such that, for each $f \in E$,

$$\lim_{n \rightarrow \infty} h_n * f = Uf \text{ and for each } n, \|h_n * f\|_E \leq \|U\|_{m(E, E)} \|f\|_E.$$

Proof. Let $U \in m(E, E)$ and let $\{h_n\}_{i=1}^{\infty}$ be an approximate identity composed of trigonometric polynomials k_n such that $\|k_n\|_1 \leq 1$ define $h_n = U k_n$.

$n = 1, 2, 3, \dots$, which are also trigonometric polynomials. Then, for $f \in E$,

$$\|Uk_n * f\|_E \leq \|k_n * Uf\|_E \leq \|k_n\|_1 \|Uf\|_E \leq \|U\|_{(E,E)} \|f\|_E.$$

for every n . Further

$$h_n * f = U k_n * f = k_n * U f \rightarrow U f$$

in E as $n \rightarrow \infty$.

3.3. Theorem

Let E be a homogeneous BD-space. Then $A(E, E)$ is also a homogeneous BD-space.

Proof. $A(E, E)$ is clearly a normed linear space. To prove the completeness, suppose that $\{h_n\}_{i=1}^{\infty}$ is a Cauchy sequence in $A(E, E)$. Now, choose a subsequence $\{u_n\}$ of $\{h_n\}$ such that

$$\|u_{n+1} - u_n\|_{A(E,E)} < \frac{1}{2^n}, \quad n = 1, 2, 3, \dots$$

From the definition of $A(E, E)$, we can find $\{f_{n,j}\}$ in E and $\{g_{n,j}\}$ in E^* ($j = 1, 2, 3, \dots$)

such that

$$(i) \quad u_1 = \sum_i f_{1,j} * g_{1,j}; (ii) \quad \sum_j \|f_{1,j}\|_E \|g_{1,j}\|_{E^*} < \|u_1\|_{A(E,E)} + 1 \\ = C + 1 \text{ (say)},$$

$$u_{n+1} - u_n = \sum_i f_{n+1,j} * g_{n+1,j}. \quad (iii)$$

$$\sum_j \|f_{n+1,j}\|_E \|g_{n+1,j}\|_{E^*} < \frac{1}{2^n}, \quad n = 1, 2, 3, \dots$$

Set $u = u_1 + \sum (u_{n+1} - u_n)$. Then $u \in A(E, E)$, since

$$(iv) \quad \sum \|f_{1,j}\|_E \|g_{1,j}\|_{E^*} + \sum_n \sum_j \|f_{n+1,j}\|_E \|g_{n+1,j}\|_{E^*} \leq C + 2.$$

Let $\varepsilon > 0$ and N be such that $2^{-N} < \varepsilon$. Then, for $n > N$,

$$\|u - u_{n+1}\|_{A(E,E)} = \|u - [u_1 + \sum_{r=1}^n (u_{r+1} - u_r)]\|_{A(E,E)} \\ \leq \sum_{r=n+1}^{\infty} \left[\sum_j \|f_{r+1,j}\|_E \|g_{r+1,j}\|_{E^*} \right]$$

$$\leq \sum_{j=n}^{\infty} 2^{-r} < \varepsilon.$$

Therefore, $\{u_n\}$ converges to u in $A(E, E)$. Hence $A(E, E)$ is a Banach space.

$A(E, E)$ is continuously embedded into C because $\|h_n\|_\infty \leq \|h\|_{A(E, E)}$ for every $h \in A(E, E)$ since C is continuously embedded into D , $A(E, E)$ is continuously embedded in D . Furthermore, since $C^\infty \subset E, C^\infty \subset E^*$.

Now, let $h \in A(E, E)$ and let $\sum_{i=1}^{\infty} f_i * g_i$ be a representation of h . Then, for each $x \in G$,

$T_x h = \sum_{i=1}^{\infty} f_i * g_i$. Since $T_x f_i \in E$ and $\|T_x f_i\|_E = \|f_i\|_E$ for every $x \in G$, we obtain that, for every $x \in G$,

$$\sum_i \|T_x f_i\|_E \|g_i\|_{E^*} = \sum_i \|f_i\|_E \|g_i\|_{E^*} < \infty.$$

Hence, for each $x \in G$, $T_x h \in A(E, E)$ and $\|T_x h\|_{A(E, E)} = \|h\|_{A(E, E)}$. Making use of (2.3) for E and E^* both, we obtain without much difficulty that $h^v \in A(E, E)$ and $\|h^v\|_{A(E, E)} = \|h\|_{A(E, E)}$. Homogeneity of $A(E, E)$ follows from the homogeneity of E , since $\|T_x f_i - f_i\|_E \rightarrow 0$ for each i , implies that

$$\|T_x h - h\|_{A(E, E)} \leq \sum \|T_x f_i - f_i\|_E \|g_i\|_{E^*} \rightarrow 0.$$

Thus, $A(E, E)$ is a homogeneous Banach space of distributions.

3.4. Theorem Let E be a homogeneous BD-space. Then $m(E, E)$ is isometrically isomorphic to the dual space of $A(E, E)$. The span of translation operators on E is weak dense in $m(E, E)$.

Proof. Suppose $U \in m(E, E)$. Define the linear functional T on $A(E, E)$ by

$$T(h) = \sum_{i=1}^{\infty} U f_i * g_i(0),$$

where $\sum f_i * g_i$ is a representation of h as an element of $A(E, E)$. T is well defined, i.e., $T(h)$ is independent of the particular representation of h chosen. To see this, suppose that $\sum_{i=1}^{\infty} f_i * g_i = 0$ is a representation of 0 as an element of $A(E, E)$. Choose a sequence $\{h_n\}_{n=1}^{\infty}$ satisfying the conclusions of Lemma 3.2. Then,

$$\sum_{i=1}^{\infty} U f_i * g_i(0) = \lim_{n \rightarrow \infty} \sum_{i=1}^{\infty} h_n * f_i * g_i(0),$$

Since the series $\sum_{i=1}^{\infty} h_n * f_i * g_i(0)$ is convergent uniformly over the set of natural numbers and, for each i , $h_n * f_i \rightarrow U f_i$ in E as $n \rightarrow \infty$. Again, $h_n \in C^\infty$ and $\sum_{i=1}^{\infty} f_i * g_i$ converges in C .

Hence,

$$\sum_{i=1}^{\infty} h_n * f_i * g_i(0), = \sum_i \int [h_n(-x)][(f_i * g_i)(x)] dx = \int [h_n(-x)][\sum f_i * g_i(x)] dx \\ = 0,$$

$= 0$

Thus, T is well defined. Further,

$$|T(h)| \leq \sum_i |Uf_i * g_i(0)| \leq \sum_i \|Uf_i\|_E \|g_i\|_{E^*} \leq \|U\|_{m(E,E)} \sum_i \|f_i\|_E \|g_i\|_{E^*}.$$

The above inequality holds for all representations of h . Hence,

$$|T(h)| \leq \|U\|_{(E,E)} \|h\|_{A(E,E)}.$$

This implies that T is continuous on $A(E, E)$ and

$$(3.1) \quad \|T\| \leq \|U\|_{(E,E)}.$$

Further, (see [3, 4.4])

$$(3.2) \quad \|U\|_{(E,E)} \leq \sup \sup \{ : \|f\|_E \leq 1, \|g\|_{E^*} \leq 1 \}$$

$$\leq \sup \sup \{ : \|h\|_{A(E,E)} \leq 1 \} = \|T\|.$$

From (3.1) and (3.2),

$$\|T\| = \|U\|_{(E,E)}.$$

In order to show that $U \rightarrow T$ is onto, suppose that $T \in A(E, E)^*$. For $g \in E^*$, define the linear functional $f \rightarrow T(f * g)$ on E . Since $T \in A(E, E)^*$,

$$(3.3) \quad |T(f * g)| \leq \|T\| \|f\|_E \|g\|_{E^*}.$$

Since E^* is the dual space of E , for each $g \in E^*$, there exists a unique element of E^* , say Ug , with $Ug(f) = Ug * f(0) = T(f * g)$. Now, for $g \in E^*$ and any trigonometric polynomial t ,

$$U(t * g) * f(0) = T(t * f * g) \\ = Ug(t * f)(0) \\ = (Ug * t) * f(0)$$

Hence,

$$U(t * g) = t * Ug, \text{ where } g \text{ and } t \text{ are as above.}$$

This shows that $U \in m(E^*, E^*)$, and hence,

$$U(t * g) = t * Ug = Ut * g,$$

Now Ut , being a trigonometric polynomial, lies in E . So,

$$(3.4) \quad Ut(g^v) = Ut * g(0) = T(t * g), \quad \forall g \in E^*.$$

Now, (3.3) yields

$$|U(g^V)| \leq \|T\| \|t\|_E, \|g^V\|_{E^*} \quad \forall g \in E^*,$$

which shows that for every trigonometric polynomial t ,

$$\|Ut\|_E \leq \|T\| \|t\|_E.$$

Since C^∞ is dense in E , U can be uniquely extended to E and

$$\|Uf\|_E \leq \|T\| \|f\|_E, \quad \forall f \in E.$$

Hence, $U \in m(E, E)$ and (3.4) will be true even if t is replaced by any $f \in E$.

$$Uf * g(0) = T(f * g) \text{ for all } f \in E \text{ and } g \in E^*,$$

Hence, It's follows that-

$$T(h) = \sum Uf_i * g_i(0), \text{ whenever } \sum f_i * g_i \text{ is a representation of an element } h \in A(E, E).$$

Since the mapping $U \rightarrow T$ is norm preserving, it is one-to-one and proves the main part of the theorem.

Now suppose that

$$\phi_U(h) = \sum Uf_i * g_i(0)$$

Where $\sum f_i * g_i$ is a representation of an element h of $A(E, E)$. For each $x \in G$, $T_x \in m(E, E)$, and therefore, $\phi_{T_x}(h) = h(-x)$ now, if $\phi_{T_x}(h) = 0$ for every $x \in G$, then $h = 0$ and hence $T(h) = 0$. For all $T \in (A(E, E))^*$ An application of the Hahn–Banach theorem shows that the span of $\{\phi_{T_x} : x \in G\}$ is dense in $A(E, E)^*$ with the weak topology. In view of the first assertion, this proves that the span of translation operators is weakly dense in $m(E, E)$.

REFERENCES

- [1]. Edwards, R. E., *Fourier Series*, Vol. II, 2nd ed., Springer–Verlag, Berlin/Heidelberg/ New York, 1982.
- [2]. Figa-Talamanca, A., Translation invariant operators in L^p , *Duke Math. J.*, **32** (1965), 495–502.
- [3]. Rudin, W., *Functional Analysis*, McGraw-Hill Inc., New York, 1973.
- [4]. Sinha, R. P. and Kant, V., *Homogeneous Banach spaces of distributions*, Comment. Math. Prace Mat., 23 (1983), No. 2, 309–314.
- [5]. Sinha, R. P. and Kant, V., *On the Branch spaces of distributions*, Bull. Soc. Math. Belg., Ser. B, 41 (1989), No. 295–305.

