

STUDY ON SOME MEDICINAL PLANTS USED BY THE TRIBAL AND RURAL PEOPLE OF CHITRAKOOT, SATNA DISTRICT, MADHYA PRADESH, INDIA Dr. Arpana Mishra*

Abstract: Chitrakoot is also well known for its beautiful hill ranges, historical caves, perennial streams and varied flora and fauna. In the present study, totally 84 species of plants belonging to 39 used as an ethno medicine on different diseases (pyretics, skin, diabetes, ulcer, gastrointestinal, diarrhoea and dysentery) by the tribal and rural peoples of study area. This paper deals with an information's about such plants with respect to their local name, botanical name, parts used and name of diseases on which they are practiced. **Key words:** Medicinal plants, Chitrakoot, diseases

*Department of Botany, Mahatma Gandhi Chitrakoot Gramodaya, Vishwavidyalaya Chitrakoot, SATNA (M.P.), India

INTRODUCTION

Medicinal plants play an important role in human life to combat diseases since time immemorial. Plants provide us food, clothes and other necessities and amenities for comfortable and safe living. Herbal drugs are comparatively safer and modern drugs can produce serious side effects. In India, the sacred and Vedas dating back between 3500 B.C. and 800 B.C. give many references of medicinal plants.

The study of ethnobotany showed that plants used by aboriginal people for their different purpose (Harshberger, 1996). Ethnobotany is the interrelationship between the primitive men and plants (Jones, 1941). A good number of plant species are being used by tribal and rural people for the treatment of diarrhoea and dysentery (Sikarwar et al., 2008).

WHO (1985) recommended the search for beneficial use of medicinal plants for the treatment of diabetes mellitus. More than 1200 plants are used around the world in the control of diabetes mellitus. Present time, hundreds of millions of people, in developing countries, derive a major part of their subsistence needs and income from collected medicinal plants and their products (Walter, 2001).

The present study was performed with the aim of producing an inventory of the herbal plants used by tribal and rural peoples of chitrakoot for treating pyretics, skin, ulcer, gastrointestinal, diabetes, diarrhoea and dysentery diseases.

MATERIALS AND METHODS

Chitrakoot is situated in the northern region of satna district of M.P. and surrounded on North, Northwest and Northeast by Karwi (Chitrakoot) district of U.P. and west by Panna district of M.P. It lies between 800 52' to 80 73'N latitude, covering an area of 1,584 sq km. Several tribal communities like Kol, Gond, Mawasi, etc. reside in Chitrakoot forest area of Majhgawan block of Satna District, Madhya Pradesh.

An ethnobotanical survey in different remote areas of chitrakoot District, Satna Madhya Pradesh was made from 2013-2014. Data are based on personal contact and observation and interview with local traditional healers and villagers of different localities of the study area. The plant identified by published literature.

RESULT AND DISCUSSION

Medicinal plant study was carried out in the chitrakoot region (M.P.) with several traditional healers and local tribal people. The different plants species were known to be effectively

used for treating pyretics, skin , ulcer, gastrointestinal, diabetes, diarrhoea and dysentery diseases by the tribal and rural peoples of chitrakoot.

Use for Antipyretics

The extract prepared from the *Azadirachta indica* (leaves), *Ocimum sanctum* (leaves), *Emblica officinalis* (Fruits), *Vitex negundo* (roots, flower, fruits and bark) etc. reported to have antipyretic activity. The Table-1 recorded that name of plants used as Antipyretics activity.

Totally 17 species of plants belonging to 14 families were known to reported to have antipyretic activity (fig.1).

S.No.	Common	Botanical name	Part used	Family	Uses
1	Neem	Azadirachta indica	Leaves	Meliaceae	Antipyretic
2	Bhindi	Abelmoschus esculentus	Seed	Malvaceae	Antipyretic
3	Australian fever tree	Eucalyptus globules	Dried leaves; Gum; Oil	Myrtaceae	Antipyretic
4	Tulsi	Ocimum sanctum	Leaves	Labiatae	Antipyretic; Antitussive
5	Satavari	Asparagus adscendens	Tuberous Roots	Liliaceae	Antipyretic; Demulscent; Nutritve Tonic
6	Lahusan	Allium sativum	Bulb; oil	Liliaceae	Antipyretic; Antiseptic
7	Brahmi	Centella asiatica	Whole Plant	Umbelliferae	Antipyretic; Blood purifier
8	Dhaniya	Coriandrum sativum	Leaves;Seeds	Umbelliferae	Antipyretic; Carminative
9	Amla	Emblica officinalis	Fruits	Euphorbiaceae	Antipyretic
10	Biiter gourd	Momordica charantia	Fruit; Leaves; Seeds	Cucurbitaceae	Antipyretic;
11	Palwal	Trichosanthes dioica	Fruits	Cucurbitaceae	Antipyretic;
12	Bahera	Terminalia belerica	Fruit	Combretaceae	Antipyretic;
13	Imli	Tamarindus indica	Fruits	Caesalpiniaceae	Antipyretic

Table -1. Medicinal plants used for antipyretics activity.

Vol. 4 | No. 7 | July 2015

14	Ganja	Cannibis sativa	Leaves; Dried Cannabaceae		Antipyretic;
			Flourerscence		Analgesic
15	Nirgandi	Vitex negundo	Roots; Flower	Verbenaceae	Antipyretic;
			Fruits; Bark		Astringent
16	Wild mint	Lantana	Whole Herb	Verbenaceae	Antipyretic
		involucrate			
17	Bambo	Bambusa	Shoot; Seeds;	Graminae	Antipytretic;
		vulgaris	Roots; Leaves		Diuret ic

Fig. 1. plants family (species) used as Antipyretics activity.

Use for the treatment of gastrointestinal diseases (anti ulcer activity, diarrhoea and dysentery)

Gastrointestinal disorders include the condition caused by eating indigestible, excessive or irregular foods, imbalanced and spicy diet, adulteration in food and contamination of drinking water, resulting the symptoms like abdominal pain, acidity, constipation, dyspepsia, indigestion, flatulence, etc. Diarrhoea, dysentery, colic and colitis also occur due to digestive complaints. Peptic ulcer dieses encompassing gastric and duodenal ulcer is the most prevalent gastrointestinal disorder. The leaves of *Lantana camara* used to treat gastrointestinal diseases (Mishra and Singh, 2009: Mishra, 2014). The *Parthenium hysterophorus* has many ethenomedicinal properties (Mishra and Singh, 2009).

Totally 30 medicinal plants species such as *Ficus benghalensis, Abutilon indicum, Syzygium cumin, Acacia leucophloea, Asparagus racemosus etc* belonging to 26 families have been a valuable source of therapeutic agents to treat various disorders including Antiulcer diseases etc (Table-2, Fig-2).

Table- 2 Medicinal plants used for the treatment of gastrointestinal diseases.

S.No.	Common	Botanical	Part used	Family	Uses
	name	name			
1	Neem	Azadirachta	dried bark	Meliaceae	Gastrointestinal
		indica	extract		dieses, Antiulcer,
2	Bargad	Ficus	Bark, buds	Moraceae	Diarrhoea
		benghalensis			
3	Kanghi	Abutilon	leaves	Malvaceae	Diarrhoea
		indicum			
4	Reunjha	Acacia	Bark	Mimosaceae	Diarrhoea
		leucophloea			
5	Jamun	Syzygium	Leaves	Myrtaceae	Dysentery,
		cumin			Diarrhoea
6	Tulsi	Ocimum	All parts	Labiatae	Antiulcer,
		sanctum			Antibacterial,
7	Satavari	Asparagus	Extract of	Liliaceae	Anti -diarrhoeal,
		racemosus	fresh root		Antibacterial,
					Antiulcer
8	Jangali piyaz	Urginea indica	Bulb	Liliaceae	Diarrhoea
9	Indian	Hemidesmus	Extract	Asclepiadaceae	Antidiarrhoeal.
	Sarsaparilla	indicus			mucoprotective,
					Antiulcer
10	Kutaja	Holarrhena	Leaves	Apocynaceae	Diarrhoea
		pubescens	-		
11	Achar	Buchanania	Gum	Anacardiaceae	Diarrhoea
		lanzan			
12	Aamla		Fruit Extract	Euphorbiacae	Antiulcer
4.2		officinalis		N	
13	Punarnaba	Boerhavia	root	Nyctaginaceae	Gastrointestinal
1.4		alffusa	E an si te	Channellin and a	aleses
14	iviarorphali	Helicteres	Fruit	Stercullaceae	Gastrointestinai
1 Г	[] Drohmi	ISUIU	Frach Inica	Caranhulariacana	Antiuloor
12	Brannin	Bucopu monniora	Fresh Juice	Scrophulanaceae	Antiuicer
16	Kamrai	Cologinalla	Whole plant	Salaginallacaaa	Ducantany
10	Kallifaj	bruontaria	whole plant	Seidginellacede	Dysentery,
17	Pol	Agglo	Erwit	Putacaaa	Diarmoed
1/	Dei	Aeyle	FIUIL	NULALEAE	Dysentery
10	Chumaiya	Argemone	Poot	Panavoração	Ducontony
10	Ghumaiya	Argemone	κοσι	Papaveraceae	Dysentery
10	Doob	Cunadan	Whole plant	Розсезе	Dysentery
19	2000	dactylon			Diarrhoea
20	Ariup	Terminalia	leaves	Combretação	Diarrhoop
20	Aljuli	ariuna	ICAVES		Diaimoed
		այսոս		l	

21	Dhawa	Anogeissus latifolia	Bark	Combretaceae	Diarrhoea
22	Papeeta	Carica papaya	Seeds	Caricaceae	Anti-helmintic, antiamebic, Antiulce
23	Kachnar	Bauhinia variegate	leaves	Caesalpiniaceae	Diarrhoea
24	Sal	Shorea robusta	Stem bark, seed	Dipterocarpaceae	Dysentery, Diarrhoea
25	Bijahra	Pterocarpus marsupium	Gum	Fabaceae	Dysentery, Diarrhoea
26	Dhak, Palas	Butea monosperma	Stem bark	Fabaceae	Dysentery, Diarrhoea
27	Amaltas	Cassia fistula	Fruit pulp	Fabaceae	Gastrointestinal dieses
28	Chilla	Casearia elliptica	Root	Flacourtiaceae	Dysentery
29	Carrot grass	Parthenium hysterophorus	Root	Composite	Dysentery
30	Gandheriya	Lantana camara	Leaves	Verbenace	Gastrointestinal dieses

Fig. 2. plants family (species) used as Anti gastrointestinal diseases activity

Use for Antidiabetic activity

Diabetes mellitus is the most common disorder in human beings and is caused by inherited or acquired deficiency in production of insulin by the pancreas, which results in an increased concentration of sugar in blood.

Plant materials which are being used as traditional medicine for the treatment of diabetes are considered one of the good sources for a new drug or a lead to make a new drug.

Totally 22 species of plants belonging to 17 families were known to reported to have antipyretic activity (Table- 3, fig.3).

S.No.	Common	Botanical name	Part used	Family	Uses
1	Holy Basil	Ocimum sanctum	leaf extract	Lamiaceae	Antidiabetic
2	Onion	Allium cepa	bulb	Liliaceae	Antidiabetic
3	Satavari	Asparagus racemosus	Extract of fresh root	Liliaceae	Antidiabetic
4	Rice	Oriza sativum	Root	Poaceae	Antidiabetic
5	Ginger	Zingiber officinale	rhizome	Zingiberaceae	Antidiabetic
6	Gudmar	Gymnema sylvestrae	Leaves	Asclepiadaceae	Antidiabetic
7	Mango	Mangifera indica	leaf extract	Anacardiacea	Antidiabetic
8	Aloe	Aloe vera	Leaf pulp extract	Aloaceae	Antidiabetic
9	Wrightia tinctoria	Safed korea	seed	Apocynaceae	Antidiabetic
10	Garlic	Allium sativum	bulb	Alliaceae	Antidiabetic
11	Aamla	Emblica officinalis	Fruit Extract	Euphorbiacae	Antidiabetic
12	Binbi	Coccinia grandis	Root	Cucurbitaceae	Antidiabetic
13	Karela	Momordica charantia	Fruit	Cucurbitaceae	Antidiabetic
14	Guduchi	Tinospora cordifolia	Leaf, Stem & Whole plant	Menispermaceae	Antidiabetic
15	Jamun	Syzygium cumin	Leaves	Myrtaceae	Antidiabetic
16	Neem	Azadirachta indica	plant extract	Meliaceae	Antidiabetic
17	Bargad	Ficus benghalensis	Bark, buds	Moraceae	Antidiabetic
18	Dhaniya	Coriandrum sativum	Leaves;Seeds	Umbelliferae	Antidiabetic
19	Aparajita	Clitoria ternatea	Flower	Fabaceae	Antidiabetic
20	Indian Gum	Acacia arabica	seeds	Fabaceae	Antidiabetic

Table-3 Medicinal plants used for antidiabetic activity.

21	Amaltas	Cassia fistula	Fruit	Fabaceae	Antidiabetic
22	Mahua	Madhuca	Flower and	Sapotaceae	Antidiabetic
		longifolia	bark		

Uses as skin diseases activity

Eczema is mostly formed in children and infants and is seldom seen among adults. Also called dermatitis, eczema is a non contagious disease. Totally 17 species of plants belonging to 13 families were known to reported to have antipyretic activity (Table- 4, fig.4).

S.No.	Common	Botanical name	Part used	Family	Uses
1	Latjira	Achyranthes aspera	Plant	Amaranthaceae	Eczema
2	Cholai	Amaranthus spinosus	Root, leaves	Amaranthaceae	Eczema
3	Aloe	Aloe vera	Leaf pulp extract	Aloaceae	Eczema
4	Anantamul	Hemidesmus indicus	root	Asclepiadaceae	Eczema
5	Mandara	Calotropis gigantea	Latex	Asclepiadaceae	Eczema
6	Ashok	Polyalthia Iongifolia	Flower	Annonaceae	Eczema
7	Bakus	Justicia ocumbens	Leaves	Acanthaceae	Eczema
8	Amaltas	Cassia fistula	Bark	Fabaceae	Eczema
9	Dhak, Palas	Butea	Flower	Fabaceae	Eczema,

		monosperma			worm ring,
10	Khaksi	Crotalaria medicaginea	Flower	Fabaceae	Eczema
11	Karanja	Pongamia pinnata	Seed	Fabaceae	Eczema
12	Tulsi	Ocimum basilicum	Leaves	Labiatae	Eczema
13	Neem	Azadirachta indica	leaves	Meliaceae	Eczema
14	Guduchi	Tinospora cordifolia	Stem	Menispermaceae	Eczema
15	Кауа	Lxora coccinia	Flower	Rubiaceae	Eczema
16		Evolvulus alsinoides	Whole plants	Convolvulaceae	Eczema
17	Doob	Cynodon dactylon	Whole plant	Poaceae	Skin disorder

CONCLUSION

Medicinal plants contain so many chemical compounds which are the major source of therapeutic agents to cure human diseases . The plants species were known to be effectively used for treating pyretics (17 species, 14 family), gastrointestinal (30 species, 26 family), skin (17 species, 13 family), diabetes (22 species, 17 family) diseases by the tribal and rural peoples of chitrakoot region(M.P.)

Vol. 4 | No. 7 | July 2015

The traditional knowledge on the properties of plants and the medicinal plants uses a vital role against various diseases. Various medicinal plants and plants extracts uses to fever, antiulcer, antipyretic, anti diabetic and anti skin activity.

REFERENCES

- 1. World Health Organization (1985). Diabetes mellitus report of a WHO study group on diabetes mellitus. Geneva: WHO; (WHO technical report,) pp727.
- Walter, S (2001). Non-wood forest products in Africa. A regional and national overview. Les produitsforesties non ligneux en Afrique. Unapercuregional et national. Rome, FAO Forestry Department.
- 3. Shinwaikar, A., Rajendra, K and Dinesh, C. (2004). Oral ant diabetic activity of Annona squamosa leaf alcohol extract in NIDDM rats. J. Ethnopharmacol., 42: 30-35.
- 4. Harsh Berger, J.W.(1996). The purpose of ethnobotany, Botanical Gezette: 31: 146-154.
- 5. Jones, V.H. 1941. The nature and status of Ethonobotany. Chron. Bot. 6: 219-222.
- Mishra, A. and Singh, R. (2009). *L.camara* : An medicinal weed. *Life Sciences Bulletin* 6 (3): 303-305
- 7. Mishra, A. and Singh, R. (2009). Ethenomedicinal importance of *Parthenium hysterophorus* L. . *Life Sciences Bulletin* 6 (2): 159-161.
- 8. Mishra, A (2014). Allelopathic properties of *Lantana camara:* A review article. International Journal of Innovative Research and Review 2(4): 32-52.