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ABSTRACT 

Annealing is the physical process of heating up a solid until it melts, followed by cooling it 

down until it crystallizes into a state with a perfect lattice. During this process, the free 

energy of solid is minimized. Practice shows that the cooling must be done carefully in order 

not to get trapped in a locally optimal lattice structure with crystal imperfections. In 

combinatorial optimization, we can define a similar process. This process can be formulated 

as the problem of finding (among a potentially very large number of solutions) a solution 

with minimal cost. Now, by establishing a correspondence between the cost function and 

the free energy, and between the solutions and physical states, we can introduce a solution 

method in the field of combinatorial optimization based on a simulation of the physical 

annealing process. The resulting method is called Simulated Annealing (SA). 

KEYWORDS: Simulation, Simulation Annealing, Boltzmann’s Constant, Optimization, 
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1.1. Simulated Annealing 

The simulated annealing method is based on the simulation of thermal annealing of critically 

heated solids. When a solid (metal) is brought in to a molten state by heating it to a high 

temperature, the atoms in the molten metal move freely with respect to each other: 

However, the moots of atoms get restricted as the temperature is reduced. As the 

temperature reduces, the atoms tend to get ordered and finally form crystals having the 

minimum possible internal energy. The process of formation of crystals essentially depends 

on the cooling rate. When the temperature of the molten metal is reduced at a very fast 

rate, it may not be able to crystalline state having a higher energy state compared to that of 

the crystalline state. 

The salient features of SA method may be summarized as follows. 

 It could find a high-quality solution that does not strongly depend on the choice of 

the initial solution. 
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 It does not need a complicated mathematical model of the problem under study. 

 It starts with any given solution and try to improve it. This feature could be utilized 

to improve a solution obtained from other suboptimal or heuristic methods.  

 It has been theoretically proved to converge to the optimum solution.   

1.2.1. Procedures of SA 

The simulated annealing method simulated the process of slow cooling of molten metal to 

achieve the minimum function value in a minimization problem. The cooling phenomenon 

of the molten metal is simulated by using the concept of probability 

distribution. The Boltzmann’s probability in distribution implies that the energy ( ) of a 

system in thermal equilibrium at temperature  is distributed probabilistically according to 

the relation 

 

         

Where  denotes the probability of achieve the energy level , and  is called the 

Boltzmann’s constant.  shows that at high temperature the system has 

nearly a uniform probability of being at a high energy state. However, at low temperatures, 

the system has small probability of being at a high-energy state. This indicates that when 

the search process is assumed to follow Boltzmann’s probability distribution, the 

convergence of the simulated annealing algorithm can be controlled by controlling the 

temperature . The method of implementing the Boltzmann’s probability distribution in 

simulated thermodynamic systems, suggested by Metropolis et al, can also be used in the 

context of minimization of functions. In the case of function minimization, let the current 

design point (state) be , with the corresponding value of the objective function given by  

 

Similar to the energy state of a thermo dynamic system, the energy  at state  is given by 

 

Then according to the Metropolis criterion, the probability of the next design point (state) 

 depends on the difference in the energy state or function values at the two design 

points (states) given by: 
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The new state design point  can be found using Boltzmann’s probability distribution: 

=  

The Boltzmann’s constant serves as a scaling factor in simulated annealing and as such, can 

be chosen as 1 for simplicity. Note that if  gives  and 

hence the point is always accepted. This is a logical choice in the context of 

minimization of a function because the function value at  , , is better(smaller) than at 

, and hence the design vector must be accepted. On the other hand, when , 

the function value at  is worse(larger) than the one at . According to most 

conventional optimization procedures, the point   cannot be accepted as the next point 

in the iterative process. However, the probability of accepting the point   , inspite of its 

being worse than  in terms of the objective function value,is finite (although it may be 

small) according to the Metropolis criterion. Note that the probability of accepting the point 

 

 

 

is not the same in all situations. As can be seen from  this probability depends 

on the values  and . If the temperature  is large, the probability will be high for design 

points  with larger function values (with larger values of .Thus, at high 

temperatures, even worse design points  (with large values of  will be small. 

Thus, as the temperature values get smaller (that is, as the process gets closer to the 

optimum solution), the design points  with larger function values compared to the one 

at    are less likely to be accepted.                                  

1.2.2. Algorithm 

 
The SA algorithm can be summarized as follows. Start with an initial design vector  

(iteration  number ) and a high value of temperature T. Generate a new design point 

randomly in the vicinity of the current design point and find the difference in function values; 

 

If  is smaller than  (with a negative value of , accept the point  as the next 

design point. Otherwise, when   is positive, accept the point as the next design point 
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only with a probability . This means, that if the value of a randomly generated number 

is larger than , accept the point . Otherwise, reject the point . This completes 

by one iteration of SA algorithm. If the point  is rejected, then the process of generating 

a new design point   randomly in the vicinity of the current design point, evaluating the 

corresponding objective function value ,and deciding to accept  as the new design 

points based on the use of the metropolis criterion , ) is continued. To simulate 

the attainment of thermal equilibrium at every temperature, a predetermined number  

of new points  are tested at any specific value of the temperature . Once the number 

of new design points  tested at any temperature  exceeds the value of , the 

temperature  is reduced by a pre specified fractional value c (  and the whole 

process is repeated. The procedure is assumed to have converged when the current value of 

temperature  is sufficiently small or when changes in the function values (  are 

observed to be sufficiently small. The choices of the initial temperature ,the number of 

iterations  before reducing the temperature, and the temperature reduction factors  play 

important roles in the successful of the SA algorithm. For example, if the initial temperature 

 is too large, it requires a large number of temperature reductions for convergence. On the 

other hand, if the initial temperature is chosen to be too small, the search process may be 

incomplete in the sense that it might fail to thoroughly investigate the design space in 

locating the global minimum before convergence. The temperature reduction factor  has a 

similar effect. Too large a value of  (such as 0.8 or 0.9) requires too much computational 

effort for convergence. On the other hand, too small a value of (such as 0.1 or 0.2) may 

result in a faster reduction in temperature that might not permit a thorough exploration of 

the design space for locating the global minimum solution. Similarly, a large value of the 

number of iterations  will help in achieving quasi equilibrium state at each temperature 

level but will result in a larger computational effort. A smaller value of , on the other hand, 

might result either in a premature convergence or convergence to a local minimum (due to 

inadequate exploration of the design space for the global minimum).Unfortunately, no 

unique set of values are available for ,  and that will work well for every problem. 

However, certain guidelines can be given for selecting these values. The initial 

temperature  can be chosen as the average value of the objective function computed at a 

number of randomly selected points in the design space. The number of iterations  can be 
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chosen between 50 and 100 based on the computing resources and the desired accuracy of 

solution. The temperature reduction factor  can be chosen between 0.4 and 0.6 for a 

reasonable temperature reduction strategy (also termed the cooling schedule). More 

complex cooling schedules, based on the expected mathematical convergence rates, have 

been used in the literature for the solution of complex practical optimization problems. In 

spite of all the research being done on SA algorithms, the choice of the initial temperature , 

the number of iterations at any specific temperature ,and the temperature reduction 

factor(or cooling rate)  still remain an art and generally require a trial and error process to 

find suitable values for solving any particular type of optimization problems. 

1.2.3. Features of the method 

Some of the features of simulated annealing are as follows. 

1. The quality of the final solution is not affected by the initial guesses, except that the 

computational effort may increase with worse starting designs. 

2. Because of the discrete nature of the function and constraint evaluations, the 

convergence or transition characteristics are not affected by the continuity and 

differentiability of the functions.  

3. The convergence is also not influenced by the convexity status of the feasible space. 

4. The design variables need not be positive. 

5. The method can be used to solve mixed integer, discrete, or continuous problems. 

6. For problems involving behavior constraints (in addition to lower and upper bounds on th

e design variables), an equivalent unconstrained function is to be formulated as in the case 

of genetic algorithms. 
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Figure  1.  Simulated Annealing Procedure 

1) 12.4. Some examples and applications of SA 

Simulated Annealing helps us to solve different optimization problems. Here, we try to solve 
few problems as follows. 
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Example 1 

Find the minimum of the following function using simulated annealing: 

  

Solution:  

We follow the procedure indicated on the flow chart of fig 13.2 

Step1: choose the parameters of the SA method. The initial temperature is taken as the 

average value of   evaluated at four randomly selected points in the design space. By 

selecting the random points as = , 

we find the corresponding values of the objective function as   

 
 respectively. Noting that the average value of the objective functions  

and  is 384.25, we assume the initial temperature to be . The temperature 

reduction factor is chosen as c=0.5.To make the computations brief, we choose the 
maximum permissible number of iterations (at any specific value of temperature) as n=2.)  
Step 2: Evaluate the objective function value at  as 

  and set the iteration number is  

Step 3: Generate a new design point in the vicinity of the current design point. For this, we 
select two uniformly distributed random numbers and 

 for in the vicinity of 4 and for  in the vicinity of 5.The numbers 

 and  are 0.31 and 0.57, respectively. By choosing the ranges of and as (-2, 10) 
and (-1, 11),which represent ranges of ± 6 about their respective current values, the 

uniformly distributed random numbers and in the ranges of and ,corresponding 

to  and  ,can be found as 

 , 

 which gives = ) = ) 

Since the objective function value   = =  387.7312, the value of   is given by 

  

Step 4: Since the value of   is Positive, we use the Metropolis criterion to decide whether 

to accept or reject the current point. For this we choose a random number in the range (0,1)

 as  .Equation (4.6) gives the probability of accepting the new design point   as 

 
 

By assuming the value of the Boltzmann’s constant k to be 1 for simplicity in 

, we obtain 
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Since  is smaller than 0.9041, we accept the point ) as the next design p

oint. Note that, although the objective function value  is larger than , we accept   . 

 because this is an early stage of simulation and the current temperature is high. 

Step 3: Update the iteration number as   
Since the iteration number  is  i ≤ , we proceed to step - 3 

 : Generate a new design point in the vicinity of the current design point 

For this, we choose the range of each design variable as  about its 

current value so that the ranges are given by (-6+1.72 ,6+1.72)=(-4.28,7.72) for  

and  (-6+5.84 , 6+5.84)=(-0.16 , 11.84) for    

.By two uniformly distributed random numbers in the range (0, 1) as  

        and     

The corresponding uniformly distributed random numbers in the ranges of  and  
become 

 

 

Which gives:     

with a function value of .We note that the function 

value   is better than   with  

Step 4: Since   , we accept the current point as  
and increase the iteration number to i=3, since i> n, we go to step 5. 

Step 5: Since a cycle of iterations with the current value of temperature is completed, we re

duce the temperature to a new value of   . Reset the current it

eration number as i=1 and go to step 3. 

Step 3: Generate a new design point in the vicinity of the current design point  and contin

ue the procedure until the temperature is reduced to a small value (until convergence). 

Example  2. 

This example shows how to find a local minimum of a function using Simulated Annealing. 

Dejong’s fifth function is a two-dimensional function with many (25) local minima: 

dejong5fcn 
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Figure 2. Graph of dejong’s fifth function 

Many standard optimization algorithms get stuck in a local minima. Because the simulated 

annealing algorithm performs a wide random search, the chance of being trapped in local 

minima is decreased. 

Note: Because Simulated Annealing uses random number of generators, each time you run 

this algorithm you can get different results. 

Minimize at the Command Line 

To run the simulated annealing algorithm without constraints, call simulannealbndat the 

command line using the objective function in dejong5fcn.m,referenced by anonymous 

function pointer: 

rng(10,'twister') % for reproducibility 

fun = @dejong5fcn; 

[x fval] = simulannealbnd (fun,[0 0]) 

This returns 

Optimization terminated: change in best function value less than options. Tol Fun. 

x =  -16.1292  -15.8214 

fval =  6.9034 
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Where: 

 x is the final point returned by the algorithm. 

 fval is the objective function value at the final point. 

Minimize Using Optimization Application 

To run the minimization using the Optimization application 

1. Set up your problem as pictured in the Optimization application 

 

 

2. Click Start under Run solver and view results: 
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Your results can differ from the pictured ones, because simulannealbnd uses a random 

number stream. 

Example 3.  

Hybridization of Simulated Annealing and fminunc 

This example uses Optimizaton Toolbox function fminunc, an unconstrained minimization 

function. The example first runs the genetic algorithm to find a point close to the optimal 

point and then uses that point as the initial point for fminunc. The example finds the 

minimum of Rosebrock’s function is defined by 
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The following shows the plot of Rosebrock’s function 

 

Figure 3.Graph of of Rosebrock’s function 

 

Global Optimization Toolbox software the dejong 2 fcn.m file, which computes Rosebrock’s 

function. To explore the example, first enter optimtool('ga') to open the Optimization app to 

the ga solver. Enter the following settings: 

 Set Fitness function to @dejong2fcn. 

 Set Number of variables to 2. 

 Optionally, to get the same pseudorandom numbers as this example, switch to the 

command line and enter: 

rng(1, 'twister' ) 

Before adding a hybrid function, click Start to run the genetic algorithm by itself. The 

genetic algorithm displays the following results in the Run solver and view results pane: 
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The final point is somewhat close to the true minimum at (1,1). You can improve this result 

by setting Hybrid function to fminunc( in the Hybrid function options). 

 

fminunc uses the final point of the genetic algorithm as its initial point. I t returns a more 

accurate result, as shown in the Run solver and view results pane. 
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Example 4 

Minimization Using simulated Annealing Algorithm 
This example shows how to create and minimize an objective function using Simulated 
Annealing in the Global Optimization Toolbox 
A simple Objective Function 

We want to minimize a simple function of two variables 

min f(x) = (4 - 2.1*x1^2 + x1^4/3)*x1^2 + x1*x2 + (-4 + 4*x2^2)*x2^2; 

  Coding the objective Function 

We create MATLAB file  named  simple  objective. M with the following code in it: 

Function simple_ objective (x) 

y = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...(-4 + 4*x(2)^2)*x(2)^2; 

The Simulated Annealing solver assumes the objective function will take one input x where x 
has as many elements as the number of variables in the problem. The objective function 
computes the scalar value of the objective and returns it in its single return argument y. 
Minimizing Using SIMULANNEALBND 
To minimize our objective function using the SIMULANNEALBND function, we need to pass 
in a function handle to the objective function as well as specifying a start point as the 
second argument. 
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ObjectiveFunction=@simple_objective; 

X0=[0.5,0.5];%Starting point  

[x,fval,exitFlag,output] =  simulannealbnd(ObjectiveFunction,X0) 

Optimization terminated: change in best function value less than options.TolFun. 

x = -0.0896    0.7130 

fval =  -1.0316 

exitFlag =   1 

output =  

iterations: 2948 

funccount: 2971 

message: [1x80 char] 

rngstate: [1x1 struct] 

problemtype: 'unconstrained' 

temperature: [2x1 double] 

totaltime: 2.1094 

The first two output arguments returned by SIMULANNEALBND are x, the best point found,  

andfval, the function value at the best point. A third output argument, exit Flagreturn a flag 

corresponding to the reason SIMULANNEALBND stopped. SIMULANNEALBND can also 

return a fourth argument, output, which contains information about the performance of the 

solver. 

SUMMARY 
Simulated annealing method is based on the simulation of thermal annealing of critically 

heated atoms in the molten metal move freely with respect to each other.The simulated 

annealing method simulated the process of slow cooling of molten metal to achieve the 

minimum function value in a minimization problem. The cooling phenomenon of the molten 

metal is simulated by using the concept of  probability distribution. The 

Boltzmann’s probability in distribution implies that the energy ( ) of a system in thermal 

equilibrium at temperature  is distributed probabilistically according to the relation 

where  denotes the probability of achieve the energy level , and  is 

called the Boltzmann’s constant. This formula shows that at high temperature the system 

has nearly a uniform probability of being at a high energy state. However, at low 
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temperatures, the system has small probability of being at a high-energy state. This 

indicates that when the search process is assumed to follow Boltzmann’s probability 

distribution, the convergence of the simulated annealing algorithm can be controlled by 

controlling the temperature . The method of implementing the Boltzmann’s probability 

distribution in simulated thermodynamic systems, suggested by Metropolis et al, can also be 

used in the context of minimization of functions. 
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